# CIGARRILLOS ELECTRÓNICOS: TOXICIDAD, ADICTIVIDAD Y POTENCIAL UTILIDAD TERAPÉUTICA <br> ELECTRONIC CIGARETTES: TOXICITY, ADICTIVITY, AND POTENTIAL THERAPEUTIC USEFULNESS 

F. Javier Ayesta Ayesta

Director del Máster en Tabaquismo Universidad de Cantabria
Ma Jesús García-Blanco
Presidenta de la Sociedad Española de Especialistas en Tabaquismo (SEDET)

Francisco Rodríguez-Lozano
Presidente del Comité Nacional de Prevención del
Tabaquismo (CNPT)

## RESUMEN

La aparición de cigarrillos electrónicos -y de otros dispositivos capaces de liberar nicotina mediante calentamiento y no combustión- ha generado expectativas sobre una posible utilidad como estrategia de reducción de daños a la par que temores de que su difusión sea utilizada como estrategia iniciadora en el consumo de derivados nicotínicos en la población juvenil o de estancamiento en el proceso de cesación de la población ya fumadora.
Dado lo reciente del fenómeno y la gran heterogeneidad de los dispositivos existentes, las evidencias científicas actuales sobre su seguridad y potencial utilidad terapéutica son aún muy escasas, pese a lo que diversas tácticas promocionales sugieren en ocasiones.
El artículo aborda la adictividad de los cigarrillos electrónicos, su seguridad y potencial toxicidad, su potencial uso clínico en la cesación o en programas de reducción de daño, así como la importancia de establecer una regulación adecuada sobre ellos.

Palabras clave: Cigarrillos Electrónicos, Nicotina, Adictividad, Toxicidad, Reducción de Daño.

ABSTRACT
The recent appearance of electronic cigarettes, and of similar
nicotine delivery systems which liberate nicotine through a heating process, and not a burning one, has increased expectations of achieving a quite less toxic product able to serve to a harm reduction approach. Simultaneously, there is a great concern about its potential use to introduce children and adolescents into nicotine consumption, and to delay smokers quitting efforts.
Since this a very recent and heterogeneous phenomenon, evidence regarding their safety or their potential therapeutic usefulness is still very scarce, despite what some promotional tactics sometimes suggest.
The article reviews the addictivity of electronic cigarettes, their safety and potential toxicity, their potential usefulness as smoking cessation agents and harm-reduction strategies, and the importance of achieving an adequate regulation on them.

Key-words:
Electronic Cigarette, Nicotine, Addictiveness, Toxicity, Harm Reduction.

INTRODUCCIÓN
La gran toxicidad de los cigarrillos, que ocasionan la muerte prematura de la mitad de quienes no abandonan su consumo y una pérdida media de 10 años de vida, ha llevado a la búsqueda de productos o de sistemas de liberación de nicotina que sean menos nocivos y que puedan sustituirlos comercialmente. Fruto de este proceso, evidente desde 1950, han sido determinados tipos de cigarrillos (con filtro, bajos en nicotina y alquitrán,...) y diversas estrategias comerciales para desincentivar su consumo (como la introducción en el mercado de los tabacos de mascar o la promoción de los cigarrillos mild, light o ultralight, en aquellos países que lo han permitido). La reciente aparición de los cigarrillos electrónicos, y en general, de los productos denominados ENDS (electronic nicotine delivery systems), ha renovado las esperanzas de poder conseguir y promover productos menos tóxicos (WHO 2009; Proctor 2011., Eriksen et al. 2012).

Se desconoce exactamente por qué un producto desarrollado en China en 2004-05 y que llegó a Occidente en 2006-07 ha conseguido el éxito comercial que no habían logrado en los tres últimos decenios las diversas multinacionales del tabaco. Éstas intentaban encontrar un sistema de administración de nicotina inhalada capaz de satisfacer las demandas de las personas fumadoras y que pudiera ser ofertado
como menos tóxico. La razón del éxito inicial de los cigarrillos electrónicos parece relacionarse con el momento de su lanzamiento, coincidente con las restricciones de consumo de tabaco en lugares cerrados implantadas en muchos países occidentales, con la mayor percepción de riesgo acerca del consumo de tabaco y con la oferta de algo nuevo que puede servir para que intenten la cesación una parte de quienes no lo habían conseguido previamente y desean hacerlo (Palazzolo 2013, Philip Morris Inc. 2013, The Economist 2013).

Lo que podía no ser más que una moda pasajera, se está consolidando en muchos países desarrollados: a partir de 2010 las ventas y consumos han realizado un despegue vertical y han empezado a ser consumidos por jóvenes y adultos jóvenes, por población que no busca la cesación (CDC 2013, Lee et al. 2013). Esta consolidación se atribuye a la especialización del mercado (los cigarrillos electrónicos empiezan a desmarcarse de los cigarrillos convencionales; de hecho, al principio eran exactamente igual a cigarrillos con filtro, e incluso con una luz roja en la punta; ahora ya no) y a la entrada decidida de las grandes tabaqueras en el mercado, al que aportan toda su acumulada experiencia de marketing y promoción y de siembra de incertidumbre sobre la presencia o ausencia de evidencia científica (Andrade 2013a, The Economist 2013).

Los llamados cigarrillos electrónicos son dispositivos con forma de cigarrillo (también hay dispositivos con otras formas) que consisten en un pequeño depósito o cartucho (en general con nicotina, con saborizantes y otros ingredientes utilizados en la fabricación de los cigarrillos) que, mediante un sistema electrónico con una batería recargable y un atomizador, calienta y vaporiza el contenido del cartucho. El vapor producido-fruto de un calentamiento, no de una combustión- se inhala de manera similar al de los cigarrillos tradicionales ("vapeo").

En la actualidad los cigarrillos electrónicos son un conjunto absolutamente heterogéneo de productos y cada vez lo va a ser más. Difieren en las estructuras que producen el calentamiento y la vaporización y en la eficacia de las mismas para conseguirlos, así
como en los contenidos de nicotina y los de las otras sustancias; al no estar aún estandarizados los posibles controles de calidad existe también variabilidad dentro de productos que declaran ser homogéneos. Esta heterogeneidad aumenta por el hecho de que, aunque hasta el momento la mayor parte de los cartuchos son de contenido fijo determinado por la empresa que los fabrica, cada vez son más frecuentes los cartuchos rellenables, cuyo contenido en sabores es elegido por los propios consumidores (William \& Talbott 2011, Etter et al. 2013, Farsalinos 2013b, Goniewicz et al. 2013, Etter 2014, Goniewicz et al. 2014a).

Lo reciente del fenómeno y su gran heterogeneidad hace que las evidencias científicas directas sobre la seguridad y la potencial utilidad terapéutica de los cigarrillos electrónicos sean muy escasas (Benowitz \& Goniewicz 2013, Palazzolo 2013, editorial 2014).

Desde la perspectiva de salud pública estos nuevos productos podrían suponer una herramienta para realizar estrategias de reducción de daños eficaces, si se consiguiera dirigirlas y restringirlas a las poblaciones específicas que pueden beneficiarse de ellas. A la par la difusión de estos productos conlleva el riesgo de que se enlentezcan, detengan o reviertan los procesos de desnormalización del consumo de tabaco, procesos que están llevando a mayor cesación y menor iniciación en aquellos países que aplican las diversas medidas de control recogidas en el Convenio Marco sobre el Control del Tabaco (Borland 2011, Cahn \& Siegel 2011, O'Connor 2012, Palazzolo 2013).

ADICTIVIDAD
La adictividad de los cigarrillos (y de las diversas preparaciones derivadas del tabaco) depende fundamentalmente de la rapidez con la que la nicotina llega al cerebro, lo cual, a su vez, depende de la vía de administración y del pH de la preparación al ser consumida. Otros componentes pueden influir en la adictividad del tabaco, pero su importancia real es marginal (Ayesta et al. 2014).

La vía inhalatoria (fumada) y la intravenosa son las
que permiten un más rápido acceso de la nicotina a cerebro. Por ello, se asume que el potencial adictivo de los cigarrillos electrónicos es similar-quizá ligeramente menor, dependiendo de sus característicasal de los cigarrillos convencionales y mayor que el de las otras formas de consumo de tabaco que no utilizan la vía pulmonar (como el tabaco oral o las preparaciones diseñadas con finalidad terapéutica). (Bell \& Keane 2012, Vansickel 2012).

Este hecho, que podría no ser muy relevante en quienes han sido consumidores regulares de cigarrillos durante mucho tiempo, lo es en quienes consume otras formas de tabaco $y$, especialmente, aquellas personas en las que los cigarrillos electrónicos suponen la primera forma de contacto con la nicotina o en los exfumadores a quienes un nuevo contacto con la nicotina inhalada (vía cigarrillos electrónicos en este caso) puede ocasionar una recaída. Por este motivo, cada vez que aborda el tema la OMS insiste que los cigarrillos electrónicos son dispositivos que mantienen o pueden generar un trastorno adictivo (WHO 2013).

## TOXICIDAD

Aunque no esté estrictamente demostrado, es muy probable que los ENDS en general y los cigarrillos electrónicos en particular sean bastante menos tóxicos que los cigarrillos convencionales, ya que en ellos no se realiza un proceso de combustión y el vapor que se inhala contienen menos sustancias. Los estudios en cultivos celulares muestran una menor toxicidad de estos productos (Bahl et al. 2013, Farsalinos et al. 2013a, Romagna et al. 2013). Desde el punto de vista de la salud pública, más importante que las reacciones adversas ya descritas (Chen 2013, Hua et al. 2013) es la morbi-mortalidad a largo plazo.

Determinar y valorar con un mínimo de precisión la intensidad de los riesgos que se derivan del consumo crónico de estos productos va a llevar bastantes años. Esto se debe a que la toxicidad del tabaco es muy diferida (entre 20 y 40 años habitualmente), a que la mayor parte de los consumidores son muy jóvenes (lo que la
difiere aún más) y a que una gran parte de los consumidores de cigarrillos electrónicos fuman también -o han fumado- cigarrillos normales, lo que dificulta extremadamente poder diferenciar factores de confusión. Adicionalmente es enorme la heterogeneidad de estos productos, tanto en eficacia de suministro como en contenidos, que en la actualidad tiende a ser de libre elección del consumidor. Por ello, todas las apreciaciones al respecto han de ser indirectas y con un criterio de prudencia, teniendo en cuenta las experiencias pasadas y las potencialidades futuras (Wollscheid \& Kremzner 2012).

Nitrosaminas. El contenido en nitrosaminas de los cigarrillos electrónicos es mínimo. El que se detecta se debe a que-al igual que ocurre con los productos utilizados como "terapia sustitutiva con nicotina" (TSN) - la nicotina se extrae de la planta del tabaco y el proceso de purificación no es perfecto, teniendo un gran coste económico disminuir las cantidades residuales. Aunque el contenido suele ser algo mayor que el que proclaman tener las diversas marcas, no parece que esta sea vaya a ser una fuente de toxicidad real (Kim et al. 2013, Goniewicz et al. 2014b).

Monóxido de carbono, (CO). Al no ser fruto de una combustión, sino de un calentamiento, los niveles de CO son despreciables, por los que la contribución de este gas a la toxicidad del tabaco fumado (fundamentalmente cardiovascular) no existe en este tipo de cigarrillos (Vardavas et al. 2012).

Dietilenglicol y compuestos similares. Para facilitar la vaporización este tipo de cigarrillos se emplea propilenglicol, glicerina vegetal y/o polietinelglicol, que están permitidos como excipientes. Estas sustancias se añaden habitualmente a los cigarrillos para mantener su humedad. Aunque no está descartada, la toxicidad derivada de estos compuestos no parece ser grave. Aunque algunos de los primeros cigarrillos electrónicos contenían dietilenglicol (sustancia no permitida en alimentos y fármacos), actualmente no lo tienen (Brstyn 2014).

Nicotina. La nicotina por vía inhalada es potencialmente muy tóxica (Joel et al. 2012, Lippi et al. 2014). Al existir receptores nicotínicos en la médula adrenal (y también en ganglios vegetativos, tanto simpáticos como parasimpáticos), la administración de nicotina da lugar a una liberación de catecolaminas, que origina taquicardia, vasoconstricción y aumento de la presión arterial sistólica y diastólica, liberación que es responsable en gran parte de la toxicidad cardiovascular del consumo de tabaco. Este efecto es muy pequeño con las vías de administración de comienzo diferido, ya que según empieza a producirse el efecto comienzan los mecanismos compensatorios. Sin embargo, es muy intenso por las vías de acción rápida, como la intravenosa y la inhalatoria, ya que para cuando se activan los mecanismos compensatorios ya se han producido los efectos en su máxima intensidad. Se desarrolla tolerancia rápidamente a esta acción, tolerancia que se pierde también rápidamente. Esto explica que los efectos cardiovasculares de fumar sean mayores con el primer cigarrillo del día y que sean especialmente intensos en quienes sólo fuman un cigarrillo al día, lo que justifica la toxicidad cardiovascular de consumos de un número bajo de cigarrillos (entre 1 y 4 al día). Por este mismo motivo es prácticamente inexistente la toxicidad cardiovascular de los preparados de acción diferida (parches, chicles y comprimidos; también porque se usan dosis menores) y es muy baja la toxicidad cardiovascular del "snus" y otras formas de tabaco sin humo.

Se desconoce cuál es la contribución exacta de estos efectos cardiovasculares agudos a la toxicidad cardiovascular crónica, ya que ningún estudio ha sido capaz de determinar hasta el momento la responsabilidad de los diversos componentes en la mortalidad cardiovascular del tabaco. En cualquier caso, se considera que, junto con el CO y la arteriosclerosis inducida, estos efectos agudos contribuyen significativamente al riesgo cardiovascular derivado del consumo de cigarrillos. Aunque es posible que la toxicidad cardiovascular de la nicotina de los cigarrillos electrónicos sea menor que la de los cigarrillos convencionales (su
inicio de acción es algo más diferido), en ningún caso es previsible que sea baja o despreciable a igualdad de dosis de nicotina (Benowitz 1997, Ambrose et al. 2004, Joel et al. 2012, Salahuddin et al. 2012, Lippi et al. 2014).

Aditivos. En los cigarrillos convencionales los aditivos componen un $10 \%$ aproximadamente del peso del cigarrillo. Cuando hace 20 años las autoridades americanas obligaron a publicar la lista de sustancias empleadas por las tabaqueras, éstas identificaron 599 sin precisar cantidades; se intuye que actualmente utilizan unos 1.400 compuestos. Los principales objetivos de los aditivos en los cigarrillos son: 1) facilitar la liberación de mayor cantidad posible de nicotina, para aumentar el "impacto" (kick); 2) mejorar cualquier aspecto del gusto asociado con el humo de tabaco y corregir cualquier apunte de sabor negativo asociado con el humo de tabaco, entre los que se incluye la irritación directa de la nicotina; 3) ocultar el olor y la visibilidad de la corriente lateral; 4) proporcionar la firma, el gusto único y característico del producto (sólo esto es lo que, en teoría, debería ser secreto comercial) (Rabinoff et al. 2007, Wertz et al. 2007, Bertholon et al. 2013).

El contenido en aditivos de los cigarrillos electrónicos varía enormemente entre las diversas marcas y sabores. En cualquier caso, es grande y está en continuo aumento, más con la entrada de las compañías tabaqueras en el mercado de los cigarrillos electrónicos, que aportan su experiencia de añadir aditivos para mejorar la aceptabilidad del producto (su "calidad" desde el punto de vista comercial).

Aunque el uso de la mayor parte de estos aditivos está aprobado para su uso en alimentos, no siempre está probada su seguridad a temperaturas superiores a la ambiental, como la que se origina tras el calentamiento. Algunos aditivos (chocolate, mentol y otros saborizantes) ejercen una función adicional en otros productos de tabaco (y probablemente en los cigarrillos electrónicos): hacerlos más atractivos -menos repulsivos- para los niños y para quienes los consumen por primera vez. Esto dota de mayor importancia la regulación de los aditivos.

Toxicidad de la exposición involuntaria a su vapor. La evidencia aquí es aún menor y va a seguir siéndolo durante bastante tiempo. Esto es lógico porque los efectos tóxicos presumiblemente serán menores y porque metodológicamente es mucho más complicado llegar a conclusiones inequívocas, aunque sea más fácil determinar el contenido de las corrientes de humo si se sabe qué moléculas se buscan. El primer estudio sobre la toxicidad del tabaquismo pasivo con cigarrillos se publicó en 1981, el primer informe en 1986 y el informe definitivo de 2006. Cualquier evidencia en una dirección u otra llevará su tiempo.

La mayor parte de la mortalidad atribuible al tabaquismo pasivo de tabaco de combustión se debe a procesos cardiovasculares (el CDC lo cifra en más del $85 \%$; en cualquier caso es superior a dos tercios). Aunque la asociación epidemiológica es inequívoca, no están bien determinadas qué sustancias presentes en el humo de tabaco, ni a qué niveles, son responsables de su toxicidad cardiovascular (la oncológica se atribuye a los carcinógenos presentes). Por este motivo no hay moléculas que puedan utilizarse como marcadores de riesgo cardiovascular en tabaquismo pasivo. Esto es extrapolable al vapor de los cigarrillos electrónicos, en los que no se ha descartado aún la existencia de toxicidad, aunque se observa que, en general, la toxicidad celular del vapor de los cigarrillos electrónicos es bastante inferior a la del humo de los cigarrillos normales. Esta toxicidad depende también de los aditivos empleados y del contenido en compuestos orgánicos volátiles y partículas finas y ultrafinas, compuestos detectados en los cigarrillos electrónicos (McAulay et al. 2012, Pellegrino et al. 2012, Czogala et al. 2013, Scripp et al. 2013, Williams et al. 2013, Zhang et al. 2013, Behar et al. 2014, Brustyn 2014, Fuoco et. 2014).

EfICACIA EN LA CESACIÓN TABÁQUICA
Aunque es bastante coherente que los cigarrillos electrónicos puedan servir para que una parte de la población fumadora abandone el consumo de cigarrillos e incluso acabe abandonando el consumo de toda forma de nicotina, la evidencia al respecto
es escasa y muy deficiente desde el punto de vista metodológico. En su informe de julio de 2013 la OMS afirma que no se ha demostrado científicamente que los cigarrillos electrónicos puedan ser una ayuda en el proceso de cesación tabáquica (WHO 2013). Lo publicado desde entonces no cambia sustancialmente esta afirmación, como recoge la evaluación de The Medical Letter de noviembre de 2013 (Med Lett 2013, 2012).

Varios informes muestran que una parte de las personas fumadoras utilizan los cigarrillos electrónicos para dejar de fumar completamente y que esto ha llevado a que hagan más intentos de cesación, algunos de los cuales han fructificado en abstinencias permanentes (Caponnetto et al. 2011, 2013, Polosa et al. 2011, 2013, Siegel et al. 2011, Kasza et al. 2013). Estas informaciones anecdóticas o de estudios no adecuadamente controlados, necesitan ser corroboradas por más estudios controlados, ya que los hasta ahora realizados no han sido concluyentes (Bullen et al. 2013, Meyer et al. 2013, Med Lett 2013). Si se comprobara que pueden ser útiles en el proceso de cesación tabáquica, lo procedente sería regularlos como medicamentos, algo que las compañías comercializadoras de estos productos se oponen sistemáticamente.

Así mismo, algunas personas refieren utilizar los cigarrillos electrónicos para reducir su consumo de cigarrillos. Aunque éste es un colectivo heterogéneo en finalidades, estrategias y resultados, es muy coherente pensar que quien sustituya -de manera total y permanente- los cigarrillos convencionales por los electrónicos probablemente consiga una notable y personal reducción de daño (Caldwell et al. 2012, Shabab et al. 2013, Popova \& Ling 2013, Lee et al. 2014).

EL DILEMA DE LA REDUCCIÓN DE DAÑOS
En la actualidad entre 5 y 6 millones de personas mueren anualmente por su consumo de tabaco. Es un problema sangrante, que requiere soluciones clínicas y sociales-legislativas y al que los ciudadanos y los profesionales sanitarios no hemos sabido responder adecuadamente. Ante ello, es lógico plantearse la necesidad de promover
estrategias alternativas que puedan suponer una efectiva reducción de daño en la población consumidora de tabaco.

La experiencia previa en tabaco respecto a los productos que potencialmente reducen la exposición (PREPs, Potential Reduced-Exposure Products) sugiere que es conveniente ser prudente a la hora de ilusionarse con las expectativas que estos productos pueden generar. Varias razones lo justifican:
a) aunque a priori es lógico, nunca se ha observado en tabaco que la reducción del consumo haya conllevado una reducción del daño, por lo que toda esta serie de productos sólo podrían ser útiles con esta finalidad si-siendo ellos mismos menos tóxicosconsiguieran eliminar el consumo de cigarrillos;
b) aunque el uso de filtros en los cigarrillos disminuye casi a la mitad el riesgo personal de padecer cáncer de pulmón en quienes fuman, la introducción de los mismos en los años 50 no evitó el incremento poblacional del número de cánceres, probablemente por su efecto desincentivador del consumo;
c) pese a lo que podía esperarse, 30-40 años más tarde se ha comprobado que las reducciones de los contenidos en nicotina y alquitrán de los cigarrillos que ocurrieron en los años 70 no dieron lugar a cigarrillos menos tóxicos desde el punto de vista cardiovascular o respiratorio, incrementándose también otros tipos histológicos de cánceres pulmonares (esto independientemente del factor desincentivador de la cesación);
d) los documentos internos de la industria muestran que las grandes tabaqueras promovieron en los años 90 el discurso sobre reducción de daño asociada al consumo de tabacos sin humo (un tipo de productos menos tóxicos que los cigarrillos, aunque no inocuos) y que lo hacían con el interés fundamental de consolidar su cuota de mercado en este sector y evitar pérdidas mayores en el de los cigarrillos convencionales.

En cualquier caso, al igual que ocurre con el resto de sustancias adictivas, las políticas de reducción de daños deben ser realizadas por las
autoridades sanitarias, evitando el riesgo de que determinados intereses comerciales influyan en las conductas de la población y distorsionen las políticas de salud pública.

La mayor parte de los profesionales no dudan de que las formas de tabaco oral y los cigarrillos electrónicos podrían ayudar a algunas personas a promover cambios de conducta y conseguir la cesación o consumos de menor riesgo (Borland 2011, Cahn \& Siegel 2011, Le Houezec et al. 2011, O'Connor 2012, Wagener et al. 2012, Benowitz \& Goniewicz 2013, Le Houezec \& Aubin 2013, Palazzolo 2013). Las dudas surgen sobre la disponibilidad universal de estas estrategias, ya que la evidencia disponible muestra que, a la par que son empleadas por algunas personas en procesos de cesación, esta disponibilidad está siendo utilizada como estrategia iniciadora en el consumo de derivados nicotínicos en la población juvenil o de estancamiento en el proceso de cesación, que posibiliten la vuelta atrás en los consumos, ya que con ellos no se consigue extinguir la conducta adictiva, sino meramente sustituirla (Noel et al 2011, Andrade 2013b, Grana 2013, STIRA 2014)

CONCLUSIONES
Los cigarrillos electrónicos -y los ENDS en general- son un conjunto muy heterogéneo de productos. Su mercado está en la actualidad en franca expansión.

Los nuevos diseños y el marketing de los cigarrillos electrónicos muestran que el principal público destinatario (target population) no son los fumadores de mediana edad que se plantean dejar de fumar o sustituir su consumo por uno más seguro aunque parte de esta población sí que puede utilizarlos con este fin.

De acuerdo a las propuestas contenidas en el artículo 18 de la revisión de la directiva de la Unión Europea sobre productos del tabaco aprobada en diciembre de 2013, es absolutamente necesario realizar una regulación del mercado de los cigarrillos electrónicos, especialmente de sus contenidos y de sus técnicas promocionales (incluyendo los
diseños), regulación que debe ser muy similar a la que se considera conveniente realizar con otros productos de tabaco que contiene nicotina.

La evidencia científica sobre la seguridad de los cigarrillos electrónicos es muy limitada. En cualquier caso, es casi seguro que son mucho menos tóxicos que los cigarrillos convencionales, aunque no inocuos. Se tardarán décadas en determinar la toxicidad real de estos preparados.

La evidencia científica sobre la eficacia de los cigarrillos electrónicos para facilitar el proceso de cesación o para sustituir el consumo de los cigarrillos convencionales es muy limitada, aunque hay estudios no controlados que parecen sugerirlo. Si la evidencia científica acabara mostrando que estos nuevos mecanismos de dispensación de nicotina pueden ser útiles para la cesación tabáquica o para abandonar el consumo de cigarrillos, probablemente convendría regularlos como se hace con otros productos con indicaciones terapéuticas.

Por ello, hasta que no haya una evidencia fidedigna y contrastable, los profesionales sanitarios no deberían recomendarlos. La OMS es muy clara al respecto: señala que se debería desaconsejar firmemente el uso de estos productos (WHO 2013).

Si bien es posible que los cigarrillos electrónicos puedan servir como estrategia de reducción de daños, esta debería ser una política de las agencias de salud pública, quienes deberían regular y controlar el uso, la difusión y la promoción de los productos.

## BIBLIOGRAFÍA

Cohort. Nicotine Tob Res. 2013; doi:10.1093/ntr/ ntt212.

Kim H.J., Shin H.S. Determination of tobacco-specific nitrosamines in replacement liquids of electronic cigarettes by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2013;1291:48-55.

Le Houezec J., Aubin H.J. Pharmacotherapies and harmreduction options for the treatment of tobacco dependence. Expert Opin Pharmacother. 2013;14:1959-67.

Le Houezec J., McNeill A, Britton J. Tobacco, nicotine and harm reduction. Drug Alcohol Rev. 2011;30:119-23

Lee S., Grana R.A., Glantz S.A. Electronic cigarette use among Korean adoles-cents: A cross-sectional study of market penetration, dual use, and relation-ship to quit attempts and former smoking. J. Adolesc Health. 2013. doi:pii: S1054-139X(13)00748-9.

Lee Y.O., Hebert C.J., Nonnemaker J.M., Kim A.E. Multiple tobacco product use among adults in the United States: Cigarettes, cigars, electronic cigarettes, hookah, smokeless tobacco, and snus. Prev Med. 2014. pii: S0091-7435(14)00031-0.doi:10.1016/j. ypmed.2014.01.014.

Lippi G., Favaloro E.J., Meschi T., Mattiuzzi C., Borghi L., Cervellin G. E-cigarettes and cardiovascular risk: beyond science and mysticism. Semin Thromb Hemost. 2014;40:60-5.

McAuley T.R., Hopke P.K., Zhao J., Babaian S. Comparison of the effects of e-cigarette vapor and cigarette smoke on indoor air quality. Inhal Toxicol. 2012;24:850-7.

Med Lett. Electronic cigarettes for smoking cessation. Med Lett Drugs Ther. 2012 Nov 26;54(1404):93-4.

Med Lett. Electronic cigarettes. Med Lett Drugs Ther. 2013 Nov 11;55(1427):89-90.

Meier E., Tackett A.P., Wagener T.L. Effectiveness of electronic aids for smoking cessation. Curr Cardiovasc Risk Rep. 2013;7. doi:10.1007/s12170-013-0343-8.

Noel J.K., Rees V.W., Connolly G.N. Electronic cigarettes: a new 'tobacco' industry? Tob Control. 2011; 20:81.

O'Connor R.J. Non-cigarette tobacco products: what have we learnt and where are we headed? Tob Control. 2012;21:181-90.

Palazzolo D.L. Electronic cigarettes and vaping: a new challenge in clinical medicine and public health. A literature review. Front Public Health 2013 doi: 10.3389/ fpubh.2013.00056.

Pellegrino R.M, Tinghino B., Mangiaracina G., Marani A., Vitali M., Protano C., Osborn J.F., Cattaruzza M.S. Electronic cigarettes: an evaluation of exposure to chemicals and fine particulate matter (P.M.). Ann Ig. 2012;24:279-88.

Philip Morris International Inc. Annual Meeting of Stockholders Conference Call May 8, 2013.

Polosa R., Caponnetto P., Morjaria J.B., Papale G., Campagna D., Russo C. Effect of an electronic nicotine
delivery device (e-Cigarette) on smoking reduction and cessation: a prospective 6 -month pilot study. B.M.C. Public Health. 2011 Oct 11;11:786.

Polosa R., Morjaria J.B., Caponnetto P., Campagna D., Russo C., Alamo A., Amaradio M., Fisichella A. Effectiveness and tolerability of electronic cigarette in real-life: a 24 -month prospective observational study. Intern Emerg Med. 2013 Jul 20.

Popova L., Ling P.M. Alternative tobacco product use and smoking cessation: a national study. Am J. Public Health. 2013;103:923-30.

Proctor, R.N. Golden Holocaust. Berkeley: University of California Press, 2011.

Rabinoff M., Caskey N., Rissling A., Park C. Pharmacological and chemical effects of cigarette additives. Am J. Public Health. 2007;97:1981-91.

Romagna G., Allifranchini E., Bocchietto E., Todeschi S., Esposito M., Farsalinos K.E. Cytotoxicity evaluation of electronic cigarette vapor extract on cultured mammalian fibroblasts (Clear-Stream-LIFE): comparison with tobacco cigarette smoke extract. Inhal Toxicol. 2013;25: 354-61.

Salahuddin S., Prabhakaran D., Roy A. Pathophysiological Mechanisms of Tobacco-Related CVD Global Heart 7.2012. DOI:10.1016/j.gheart.2012.05.003

Schober W., Szendrei K., Matzen W., Osiander-Fuchs H., Heitmann D., Schettgen T., Jörres R.A., Fromme H. Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases FeNO levels of e-cigarette consumers. Int J. Hyg Environ Health. 2013. pii: S1438-4639(13)00153-3. doi: 10.1016/j.ijheh.2013.11.003.

Schripp T., Markewitz D., Uhde E., Salthammer T. Does e-cigarette consumption cause passive vaping? Indoor Air. 2013;23:25-31.

Shahab L., Brose L.S., West R. Novel delivery systems for nicotine replacement therapy as an aid to smoking cessation and for harm reduction: Rationale, and evidence for advantages over existing Systems. C.N.S. Drugs. 2013;27:1007-19.

Siegel M.B., Tanwar K.L., Wood K.S. Electronic cigarettes as a smoking-cessation: tool results from an online survey. Am J Prev Med. 2011;40:472-5.

STIRA: Advertising of Electronic cigarettes to smokers and non-smokers. Stanford Research Institute on the impact of tobacco advertising. http://www.youtube.
com/user/StanfordTobacco/\#p/p, 2014
The Economist. The tobacco industry is changing fast: Kodak moment. 28.09.2013; p. 56-57.

Vansickel A.R., Weaver M.F., Eissenberg T. Clinical laboratory assessment of the abuse liability of an electronic cigarette. Addiction. 2012;107:1493-500.

Vardavas C.I., Anagnostopoulos N., Kougias M., Evangelopoulou V., Connolly G.N., Behrakis P.K. Shortterm pulmonary effects of using an electronic cigarette: impact on respiratory flow resistance, impedance, and exhaled nitric oxide. Chest. 2012; 141:1400-6.

Wagener T.L., Siegel M., Borrelli B. Electronic cigarettes: achieving a balanced perspective. Addiction. 2012;107:1545-8.

Wertz M.S., Kyriss T., Paranjape S., Glantz S.A. The toxic effects of cigarette additives. Philip Morris' Project mix reconsidered: an analysis of documents released through litigation. PLoS Med. 2011;8:e1001145. doi: 10.1371/journal.pmed. 1001145.

WHO. Questions and answers on electronic cigarettes or electronic nicotine delivery systems (E.N.D.S.) 2013. En http://www.who.int/tobacco/communications/ statements/ eletronic_cigarettes/en/ 2013 (17.02.2013).

WHO. TobReg Scientific Recommendation: Devices designed for the purpose of nicotine delivery to the respiratory system in which tobacco is not necessary for their operation. Geneva: WHO, 2009.

Williams M., Talbot P. Variability among electronic cigarettes in the pressure drop, airflow rate, and aerosol production. Nicotine Tob Res. 2011;13:1276-83.

Williams M., Villarreal A., Bozhilov K., Lin S., Talbot P. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS One. 2013;8:e57987.

Wollscheid K.A., Kremzner M.E. Electronic cigarettes: safety concerns and regulatory issues. Am J. Health Syst Pharm. 2009;66:1740-2.

Zhang Y., Sumner W., Chen D.R. In vitro particle size distributions in electronic and conventional cigarette aerosols suggest comparable deposition patterns. Nicotine Tob Res. 2013;15:501-8.

