Monitorización a largo plazo del fitoplancton de la bahía de Mahón, incluyendo mareas rojas.

José María VALENCIA¹, Margalida PUIGSERVER², Vicenç FORTESA³, Núria MONERRIS², i Gabriel MOYÀ².

¹Laboratori d'Investigacions Marines i Aquicultura, LIMIA. IRFAP-Govern de les Illes Balears, Av. Ing Gabriel Roca, 69, Port d'Andratx, Spain. jmvalencia@dgpesca.caib.es

² Universitat de les Illes Balears (UIB), Ctra. Valldemossa km 7,5, 07122 Palma, Balearic Islands, Spain

³ Parc Natural de Ses Salines d'Eivissa i Formentera, Conselleria de Media Ambient, Agricultura i Pesca. Carrer Murcia nº49, Balearic Islands, Spain

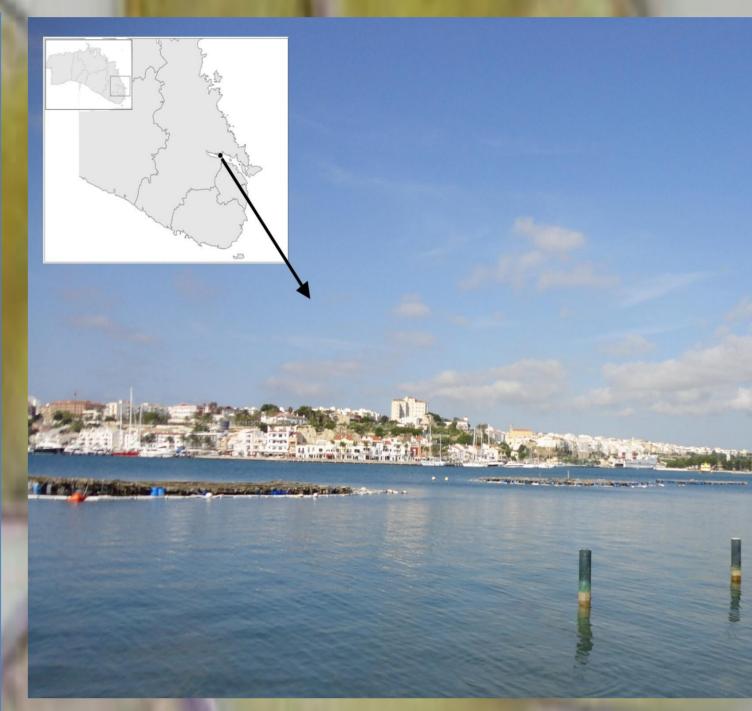
		NUAL		ERANO	_	TOÑO	_	IERNO		AVERA
DINOPHYCEAE	N°	%	Nº	%	Ν°	%	Ν°	%	N°	%
Akashiwo sanguínea*	57	33,1%		55%	_	3,8%			18	31%
Alexandrium minutum* Alexandrium sp.*	29 57	16,9% 33,1%		9% 41%	_	15,4% 23,1%	2	21% 11%	15 21	269 369
Ceratium furca	140	81,4%	55	80%	21	81%	13	68%	51	889
Ceratium fusus Dinophysis caudata*	28 17	16% 10%		12,9% <i>17%</i>	_	35% 15%	5 1	26% 5%	5	99
Dinophysis sacculus*	81	47%	26	38%	9	35%	9	47%	37	649
Diplopsalis sp. Gonyaulax spinifera	19 21	11,0% 12,2%		14% 10,0%		15% 12%	3	11% 16%	3	59 149
Gonyaulax sp.	30	17%	4	10,0%	7	27%	4	21%	5	9%
Gymnodinium sp. Gymnodinium spp. (petites)	86 84	50,0% 48,8%	_	58% 52%	_	38% 31%	9	47% 16%	26 15	469 279
Gyrodinium fusiforme	60	34,9%	23	33%	4	15%	4	21%	29	529
Gyrodinium sp Heterocapsa pygmaea	28 45	16,3% 26,2%	_	23% 33%		12% 8%	4	21%	10 20	189 369
Heterocapsa spp.	42	24,4%	_	20%	_	42%	4	21%	11	20%
Karenia brevis* Karenia mikimotoi*	10 30	5,8% 17,4%		4% 22%	_	4% 8%			6 13	119 239
Karlodinium group*	44	25,6%		30%		15%			19	349
Oxytoxum sp.	17	9,9%		12%	_	15%			4	79
Polykrikos sp. Prorocentrum arcuatum	32	5,2% 19%	_	4% 25%	_	27%			6 8	119 149
Prorocentrum cordatum*	82	48%		50%		65%	11	58%	19	339
Prorocentrum gibbosum Prorocentrum gracile	36 42	20,9% 24,4%	_	23% 23%	_	4% 19%	3 6	16% 32%	16 15	289 279
Prorocentrum mexicanum	14	8,1%	_	13%		4%	1	5%	3	5%
Prorocentrum micans Prorocentrum triestinum	43 54	25,0% 31,4%	_	14,3% 20%	_	23% 38%	12 13	63% 68%	15 17	279 309
Prorocentrum sp.	26	15%	_	13%	_	15%	4	21%	6	109
Protoperidinium conicum	8	5%		3%	_	8%	2	11%	2	49 7 10
Protoperidinium diabolum Protoperidinium divergens	38	5,2% 22%	_	17%	5	8% 19%	3 5	16% 26%	16	7,19 299
Protoperidinium oceanicum	13	8%	3	4%	4	15%	1	5%	5	99
Protoperidinium sp. Psellodinium sp.	121 15	70,3% 8,7%		72% 10%	_	65% 8%	12 2	63% 11%	42	759 79
Scrippsiella trochoidea	36	20,9%	14	20%	4	15%	1	5%	17	30%
Scrippsiella sp. Torodinium sp.	55 19	32,0% 11,0%	+	32% 13%	_	12% 8%	2	11% 5%	28 7	509 139
Trybionella compressa	22	12,8%	11	16%	1	4%	1	5%	9	169
Warnowia sp. Dinoflagelats tecats	23	13,4% 4 7%	_	14% 4%	_	4%	2	160/	12	219 40
Dinoflagelats tecats Dino. Nues (Nano)	38	4,7% 22,1%		4% 16%		42%	3 9	16% 47%	7	49 139
no identificats	36	20,9%		12%	_	42%	9	47%	8	149
BACILLARIOPHYCEAE CENTRALS										
Bacteriastrum sp.	16	9,3%		5 7%	4	15%	3	16%	4	79
Cerataulina dentata Cerataulina pelagica	29 47	10% 27,3%		16 23% 33 48%		8% 15%	2	11%	11 8	209 149
Cerataulina sp.	23	13%		6 9%	_	23%	2	11%	5	99
Chaetoceros mitra	20	11,6%		9 13%		12%	1	5%	7	139
Chaetoceros tenuissimus Chaetoceros sp.	42 145	24,4% 84,3%		24 35%61 88%		4% 96%	14	74%	17 44	309 799
Dactyliosolen sp.	37	21,5%	_	17 25%		27%	3	16%	10	189
Guinardia striata	50 15	29,1 <mark>%</mark> 8,7%		22 32% 4 6%		31% 8%	8 6	42% 32%	12	219 59
Guinardia sp Leptocylindrus danicus	73	42,4%		34 49%		46%	5	26%	22	399
Leptocylindrus minimus	41	23,8%		15 22%	_	46%	7	37%	7	139
Minidiscus sp. Proboscia alata	18 45	10,5% 26,2%		12 17% 15 22%		4% 31%	3	16%	5 19	349
Rhizosolenia sp.	43	25,0%		3 4%	4	15%	9	47%	19	349
Thalassiosira sp. Triceratium sp.	10	5, 2% 5, 8%		2 3% 6 9%	_	4%	4	21%	2 4	49 79
Sense identificar	10	5,8%		1 1%	_	15%	3	16%	2	49
PENNALS Amphora sp.	19	11,0%		11 16%	1	4%	1	5%	6	119
Asterionella sp.	12	7%	_	11 1076	8	31%	4	21%		117
Asterionellopsis glacialis	15	9%		6 9%		27%	2	11%	15	0.00
Cylindrotheca closterium(gran) Cylindrotheca closterium(petita)	129 33	75,0% 19,2%		56 81%11 16%	_	65% 12%	11	58%	45 19	809 349
Licmophora sp.	51	29,7%		15 22%	_	27%	8	42%	21	389
Lioloma sp. Navicula sp.	30	5,2% 17,4%		3 4% 9 13%		15% 15%	1 8	5% 42%	9	169
Nitzschia longissima	35	20,3%		11 16%	_	27%	8	42%	9	169
Nitzschia sp. Phaeodactilum tricornutum	55 15	32,0%	_	21 30%5 7%		38% 8%	10	53%	14 8	259
Pleurosigma sp.	47	8,7% 27,3%		19 28%		50%	6	32%	10	149 189
Pseudo-nitzschia delicatissima*	74	43,0%		31 45%		23%	5	26%	32	579
Pseudo-nitzschia fraudulenta* Pseudo-nitzschia pseudodelicatissima*	10 27	5,8% 15,7%	_	3 4% 15 22%		15% 15%	2	11% 16%	5	99
Pseudo-nitzschia seriata*	21	12,2%		6 9%	6	23%	2	11%	7	139
Pseudo-nitzschia sp* Tabellaria fenestrata	21	12,2% 5,2%		7 10% 4 6%	_	27% 12%	3	16% 11%	4	79
Thalassionema frauenfeldii	26	5,2% 15,1%		6 9%		15%	1	5%	15	26,89
Thalassionema nitzschioides	98	57,0%		45 65% 7 10%	_	42% 15%	10	53%	32	57,19
Pennades >20 mm Pennades <20 mm	31	18,0% 18,0%		7 10% 9 13%	_	15% 27%	9	47% 32%	11 9	19,6° 16,1°
No identificades	27	15,7%		8 12%	7	27%	6	32%	6	10,79
ALTRES Chlorodendrophyceae										
Tetraselmis sp.	45	26,2%		15 22%	4	15%	2	11%	24	439
Cryptophyceae No identificats	104	60,5%		38 55%	11	42%	16	84%	39	709
Leucocryptos <mark>marina</mark>	34	19,8%	_	36 55% 13 19%	_	15%	5	26%	12	219
Cyanophyceae	74	12.00/		38 55%	6	220/			30	5.40
Plagioselmis prolonga Rhodomonas sp.	35	43,0% 20%	_	30 55% 10 14%	_	23% 19%	6	32%	14	549 249
Dyctiochophyceae		22/		1 00/	_	1001		4404		
Octatis sp. Ebriosphyceae	11	6%		4 6%	5	19%	2	11%		
Ebri <mark>a s</mark> p.	10	5,8%		2 3%	_	23%	2	11%		
Hermesinum adriaticum Phaeophyceae	25	15%		19 28%	5	19%	1	5%		
Dictyocha fibula	36	20,9%		5 7%	15	58%	12	63%	4	7
Prymnesiophyceae		05.007		11 1001		2424	0	4704	40	00
Acanthoica sp. Anoplosolenia brassiliensis	44	25,6% 28,5%		11 16%20 29%		31% 38%	9 5	47% 26%	16 14	29° 25°
Calciopappus caudatus	27	15,7%		20 29%	6	23%			1	2
Calciosolenia sp. Chrysochromulina sp.	16 87	9,3% 50,6%		7 10% 41 59%	_	31% 35%	3	16%	1 34	61
Coccosphaerales	48	27,9%		47 39% 17 25%	_	35%	10	53%	12	21
Ophiaster sp.	23	13,4% 38.4%		7 10%		46% 15%	2	11% 5%	2	<i>4</i>
Phaeocystis sp. Rhabdolithes sp.	66 28	38,4% 16,3%		32 46% 11 16%	_	15% 35%	1	5%	29 8	52 14
Syracosphaera pulchra	28	16%		17 25%	4	15%	3	16%	4	7
Syracossphaera sp Pyramimonadophyceae	10	6%		3 4%	4	15%	1	5%	2	4
Pyramimonas sp.	78	45,3%		41 59%	4	15%	5	26%	28	50°
Raphidophyceae				<i>E</i>						
Heterosigma akashiwo	9	5,2%		5 7%			2	11%	2	49
Nanoflagel.lats >5mm	149	86,6%		62 90%		77%	17	89%	50	899
Ultraflagel·lats <5mm No identificats	121 46	70,3% 26,7%		53 77%15 22%		65% 42%	7 8	37% 42%	44 12	799 219
	, 0			/0		. = 70		. = /0		_ ' /

Tabla: Lista de las especies de fitoplancton más frecuentes. Nº se refiere al nº de veces que aparece en los muestreos, mientras que % se refiere al porcentaje respecto del número de muestreos. Se presentan los taxones que han aparecido como mínimo un 5% de las veces. Las especies marcadas con asterisco son especies potencialmente tóxicas o formadoras de proliferaciones según la IOC.

A causa de sus especiales condiciones ecológicas, el puerto de Mahón (bahía muy cerrada, elevadas temperaturas estivales y gran productividad primaria) es una zona idónea para que proliferen los organismos filtradores, en general, y los moluscos bivalvos en particular. Por este motivo, la actividad marisquera tiene una larga trayectoria, aunque las primeras referencias escritas son de finales del siglo XVIII (Grau, A. 1989).

A principios del siglo XX (1926) se introdujo el cultivo de mejillón y en 1940 ya había 10 mejilloneras. El año 1970 se tuvo que prohibir la captura de bivalvos en el puerto de Mahón, debido a la mala calidad de las aguas, pero a partir de 1981, con la mejora de las condiciones higiénicas, se reinició el cultivo de ostra (Ostrea edulis), de la escupiña grabada (Venus verrucosa) y del mejillón (Mytilus galloprovincialis). Esta última especie es la base de la producción de moluscos del puerto de Mahón (Grau 1989; Valencia 2015).

La producción de mejillones ha ido variando con los años, debido a diferentes causas. El valor máximo de producción de mejillón se dio en 2012, con 178 Tn y el de escupiña grabada en 2013, con 1,2 Tn. La producción de 2021 fue de 111 Tn de mejillón y 0,3 Tn de escupiña grabada (datos de la DG de Pesca y Medio Marino). A día de hoy, sólo quedan dos empresas que se reparten las 14 mejilloneras autorizadas.


El Reglamento 853/2004 por el que se establecen normas específicas de higiene para los productos de origen animal establece una serie de controles higiénicos que se deben realizar sobre las zonas de producción de moluscos bivalvos y sobre éstos. Entre ellas, se obliga a un control del fitoplancton en el agua donde se crían los moluscos bivalvos y con este marco normativo, se diseñó un programa de control del fitoplancton en el puerto de Mahón.

En este trabajo se presentan los datos más relevantes de este control desde 1993 hasta 2018.

MATERIAL Y MÉTODOS

Las muestras de fitoplancton se recogieron de enero a diciembre, con una frecuencia mensual desde 1983 hasta 2007 y quincenalmente desde entonces (entre abril a diciembre) en el puerto de Mahón (Fig. 1).

Las muestras de agua se recogieron entre las 9 y las 11 h para evitar el efecto de la noche sobre la migración vertical del fitoplancton, utilizando una manguera lastrada para recoger una muestra integrada previamente limpiada con agua de mar de la misma zona. El agua recogida se fijaba añadiendo unas gotas de Lugol acético (Throndsen, 1978) y la identificación y recuento se realizó mediante la técnica de Uthermöhl (Margalef, 1974). Para la observación de las muestras se utilizó un microscopio invertido ZEISS Axiovert.

Ubicación de las mejilloneras en el puerto de Mahón, Menorca.

En el conjunto de muestreos realizados se han identificado 357 taxones de microalgas a nivel de especie y 103 a nivel de género. En estas comunidades fitoplanctónicas se encuentran encuadrados representantes de diferentes grupos filéticos eucariontes habituales en la composición del plancton autótrofo de los ecosistemas marinos. El más importante respecto del número de taxones corresponde a las dinofíceas o dinoflageladas, con 224 taxones y las bacilariofíceas o diatomeas con 159 taxones. De estos, 33 corresponden a especies potencialmente tóxicas o formadoras de proliferaciones según la IOC. Del resto de microalgas, 28 taxones corresponden a haptofíceas (primnesiofíceas), 7 a cianofíceas, 5 a euglenofíceas, 4 a criptoficeas, y el resto repartido entre cloroficias, prasinoficias, euglenofíceas, feofícias, etc. Las especies que aparecen en casi todos los muestreos son Ceratium furca, Protoperidinium sp., Gymnodinium sp., Chaetoceros sp. y Cylindroteca closterium. En este listado no se presentan otras microalgas como dinoflageladas o diatomeas de reducidas dimensiones o las ultraflageladas (células inferiores a 5µm), que se han identificado en nivel de grandes grupos. Esto no quiere decir que estas microalgas sean poco importantes desde la perspectiva de la estructura y el funcionamiento de la comunidad fitoplanctónica, de hecho estos grupos se han incluido en los recuentos de abundancias celulares y algunas de ellas, como las ultraflageladas, son especialmente importantes desde una perspectiva trófica porque pueden constituir un componente importante del bucle microbiano que se nutre de la materia orgánica y de las bacterias que hay en el agua (Puigserver et al. 2019).

En lo que se refiere a especies potencialmente tóxicas, teniendo en cuenta su importancia para la salud pública, en el programa de control de las zonas de producción de moluscos bivalvos de las islas Baleares y debido a la falta de valores límite en la normativa europea y nacional, se han tomado como referencia valores establecidos en otros países como valor de riesgo de posible toxicidad de los moluscos (Todd, 2003). Teniendo en cuenta estos valores, se han producido 15 proliferaciones de Alexandrium (principalmente A. minutum), 2 proliferaciones de Dinophysis sacculus, 1 de Prorocentrum mínumum y 9 de Pseudonitzschia (o de P. pseudodelicatissima o de P. delicatissima). En todas las ocasiones en que se detectó la presencia de estas especies por encima del valor de alerta, los análisis de biotoxinas fueron negativos. Más aún, en las 7 ocasiones en que se detectó la presencia de biotoxinas lipofílicas, no se pudo asignar la causa de la toxicidad a alguna proliferación. Con estos resultados, se pone de manifiesto la débil asociación entre la presencia de biotoxinas y la proliferación de especies potencialmente productoras de biotoxinas (Van der Fels-Klerx et al. 2012).

BIBLIOGRAFIA

Grau, A. M. 1992. In:Jornades sobre conservació i desenvolupament a Menorca. Aproximació a l'evolució històrica i a la situació actual del marisc o el marisqueig a Maó (Menorca.). UNESCO. 159-

Margalef, R. 1974. Counting. In: Vollenweider, R.A. (ed.). A manual on methods for measuring primary production in aquatic environments. Blackwell Scientific Publications. Oxford. 7-14.

Puigserver, M., Monerris, N., & Moyà, G. 2019. Estudi de les comunitats fitoplanctòniques estivals a quatre platges del municipi de Santa Eulària del Riu (Eivissa). Bolletí de la Societat d'Història Natural de les Balears, 62, 33-50.

Throndsen, J. 1978. Preservation and storage. In: Sournia, A. (ed.). Phytoplankton manual. Monographs on Oceanographic Methodology no 6. UNESCO. Paris. 69-74.

Todd, K. 2003. Role of phytoplankton monitoring in marine biotoxin programmes. Manual of Harmful

Marine Microalgae, 649-655. Van der Fels-Klerx, H. J., Adamse, P., Goedhart, P. W., Poelman, M., Pol-Hofstad, I. E., Van Egmond, H., & Gerssen, A. 2012. Monitoring phytoplankton and marine biotoxins in production waters of the Netherlands: results after one decade. Food Additives & Contaminants: Part A, 29(10), 1616-1629.

algaeвая

Chaetoceros sp.

frecuentes de fitoplancton

G CONSELLERIA

O AGRICULTURA, I PESCA I ALIMENTACIÓ

B INSTITUT RECERCA / I FORMACIÓ AGROALIMENTÀRIA I PESQUERA ILLES BALEARS

