

AMPLIACIÓN DE LA SUBESTACIÓN DRAGONERA 132 kV. NUEVA POSICIÓN EVRE

COMUNIDAD AFECTADA

Islas Baleares

TÉRMINO MUNICIPAL

Maó

Madrid, mayo de 2022

Rfa.: TI.S/2022/ J-0848-S1421

AMPLIACIÓN DE LA SUBESTACIÓN DRAGONERA 132 kV

ÍNDICE

		N° PAGINAS
DOCUMENTO 1	. MEMORIA	21
ANEXO 1	. CÁLCULOS	44
DOCUMENTO 2	. PLIEGO DE CONDICIONES TÉCNICAS	10
ANEXO 1	. REQUISITOS AMBIENTALES. ESTUDIO DE GESTIÓN E	DE
	RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN	14
ANEXO 2	. ESTUDIO DE SEGURIDAD	17
DOCUMENTO 3	. PLANOS	16
DOCUMENTO 4	. PRESUPUESTO	3
DOCUMENTO 5	. ESTUDIO CAMPOS MAGNÉTICOS	11
DOCUMENTO 6	. RELACIÓN DE BIENES Y DERECHOS	5

Madrid, mayo de 2022 El Ingeniero industrial

David González Jouanneau

Jefe del Departamento de Ingeniería de Subestaciones

Red Eléctrica de España SAU

AMPLIACIÓN DE LA SUBESTACIÓN DRAGONERA 132 kV. NUEVA POSICIÓN EVRE

DOCUMENTO 1 MEMORIA

Dirección de Ingeniería y Construcción Dpto. Ingeniería de Subestaciones

Índice

CAPÍTULO 1	I. GENERALIDADES	4
1.1 AN	NTECEDENTES, JUSTIFICACIÓN Y FINALIDAD DE LA INSTALACIÓN	4
1.2 OE	BJETO	5
PÚBLICO	ELACIÓN DE ADMINISTRACIONES, ORGANISMOS O EMPRESAS DE SERVI O O SERVICIOS DE INTERÉS GENERAL, EN LA PARTE QUE LA INSTALACIÓN PUI R A BIENES Y DERECHOS A SU CARGO	ED/
1.4 CA	ARACTERÍSTICAS TÉCNICAS A EFECTOS RETRIBUTIVOS	6
1.5 ES	QUEMA DE LA ACTUACIÓN	6
CAPÍTULO 2 DRAGONER	2. DESCRIPCIÓN DE LAS OBRAS EN LA SUBESTACIÓN RA 7	DE
2.1 GE	ENERALIDADES E HIPÓTESIS DE DISEÑO	7
2.1.1 2.1.2	Características básicas y emplazamiento Hipótesis de diseño	
2.2 CA	ARACTERÍSTICAS GENERALES DE LA INSTALACIÓN	8
2.2.1	Descripción general de la instalación	8
2.2.2	Configuración y disposición general de la instalación	9
2.3 SIS	STEMA ELÉCTRICO	9
2.3.1	Magnitudes eléctricas	9
2.3.2	Distancias	
2.3.3	Embarrados	
2.3.4		
	ED DE TIERRAS	
2.4.1 2.4.2	Red de tierras inferiores	
	•	
	TRUCTURAS METÁLICAS	
2.6 SIS	STEMAS DE CONTROL Y PROTECCIÓN	
2.6.1	Sistemas de control	
262	Sistemas de protecciones	15

	VICIOS AUXILIARES	Colegio
2.7 SER		
2.8 SIS	rema de telecomunicaciones	do Ingel
2.9 OBI		
2.9.1	Movimiento de tierras	Industrial
2.9.2	Drenajes	امد طم ۱
2.9.3	Cimentaciones, viales y canales de cables	hinhel
2.9.4	Accesos	Vicado
2.9.5	Edificios y casetas	No 20
2.9.6	Cerramiento	220201
2.10 II	NSTALACIONES DE ALUMBRADO Y FUERZA	0 Each
2.10.1	Alumbrado	ıs Vicar
2.10.2	Fuerza	10/
2.11 S	Edificios y casetas	10/2022
CAPÍTULO 3.	NORMATIVA APLICADA	Firmado Fle
CAPÍTULO 4.	20	ctrónicamente nor el C O I I M. Para comprohar su validez: https://www.coiim.es/Verificacion. Cod Ver: 92392674

CAPÍTULO 1. GENERALIDADES

1.1 ANTECEDENTES, JUSTIFICACIÓN Y FINALIDAD DE LA INSTALACIÓN

RED ELÉCTRICA DE ESPAÑA, S.A.U. (en adelante RED ELÉCTRICA), de conformidad con lo establecido en los artículos 6 y 34 de la Ley 24/2013, de 26 de diciembre del Sector Eléctrico, como gestor de la red de transporte y transportista único con carácter de exclusividad, tiene atribuida la función de transportar energía eléctrica, así como construir, mantener y maniobrar las instalaciones de transporte.

En atención a la Resolución número 2584 del Director General de Energía en la que se fijan los criterios que determinan la red de transporte eléctrico en la Comunidad Autónoma de Islas Baleares de fecha de 4 de febrero de 2005 (BOIB número 31, de fecha 22-05-2005), tendrán consideración de red de transporte las líneas y subestaciones de tensión 66 kV o superior, las interconexiones entre islas y con el sistema peninsular independientemente de su tensión, los transformadores de tensión secundaria igual o superior a 66 kV y los elementos de control de potencia activa o reactiva de tensión igual o superior a 66 kV, así como los activos y sistemas de comunicaciones, protecciones, control y servicios auxiliares, terrenos y edificaciones necesarios para el funcionamiento adecuado de las instalaciones de transporte.

Las instalaciones recogidas en el proyecto objeto del presente documento se encuentran recogidas en el Decreto 96/2005, de 23 de septiembre, de aprobación definitiva de la revisión del Plan Director Sectorial Energético de Illes Balears.

En el ejercicio de las citadas funciones y en orden al efectivo cumplimiento de las finalidades relativas al transporte de energía eléctrica, RED ELÉCTRICA ha proyectado la ampliación de la subestación DRAGONERA en el parque de 132 kV, con objeto de facilitar el acceso a la Red de Transporte a un Agente. La instalación se ubica en el término municipal de Maó, en la isla de Menorca, dentro de la Comunidad Autónoma de Islas Baleares.

El presente proyecto favorecerá una mayor penetración de energías renovables en el sistema eléctrico posibilitando el cumplimiento de la Ley 7/2021, de 20 de mayo, de cambio climático y transición energética, en la que se establece para 2030 un 74% de generación eléctrica a partir de energías de origen renovable, y 100% en 2050, así como de la Directiva 2012/27/UE. El escenario que se plantea tras la resolución pactada por la comunidad internacional y reflejada en el Acuerdo de París, alcanzado en la XXI Conferencia de las Partes (COP21) de la Convención Marco de las Naciones Unidas sobre el Cambio Climático, apunta a una cada vez mayor cuota de participación de las energías renovables en el mix de generación eléctrica con el objetivo de alcanzar la neutralidad de emisiones de gases de efecto invernadero, así como garantizar el suministro a precios competitivos dentro de un modelo sostenible.

La citada instalación está incluida en el documento denominado "Plan de desarrollo de la Red de Transporte de Energía Eléctrica. Periodo 2021-2026", aprobado por el Consejo de Ministros de 22 de marzo de 2022 y publicada por Resolución de la Secretaria de Estado de Energía de fecha 8 de abril de 2022 («Boletín Oficial del Estado» n.º 93, de 19 de abril de 2022, en el Anexo I Red de Partida "I.- Actuación RDL Integración de renovables y resolución de restricciones técnicas Conexión de renovables").

La citada Planificación eléctrica es vinculante para RED ELÉCTRICA como sujeto que actúa en el sistema eléctrico y en su elaboración las Comunidades Autónomas han participado en las propuestas de desarrollo de la red de transporte de energía eléctrica, en cumplimiento de lo dispuesto en la referida Ley 24/2013 de 26 de diciembre y en el Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica.

1.2 OBJETO

De conformidad con lo establecido en la referida Ley 24/2013, del Sector Eléctrico, y en el Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica, constituye el objeto de este proyecto de ejecución, a efectos administrativos, la aportación de los datos precisos para la obtención de la correspondiente resolución relativas a:

- Autorización administrativa previa para la ampliación de la subestación DRAGONERA 132 kV.
- Autorización administrativa de construcción de la ampliación de la subestación DRAGONERA 132 kV.
- Declaración, en concreto, de Utilidad Pública con los efectos establecidos en el artículo 56 y siguientes de la Ley 24/2013, de 26 de diciembre, del Sector Eléctrico.

Estas instalaciones se encuentran incluidas en la red de transporte secundaria en virtud de los artículos 6 y 34 de la Ley 24/2013, de 26 de diciembre, del Sector Eléctrico, por lo que compete a la Dirección General de Energía y Cambio Climático del Gobierno de las Islas Baleares resolver sobre la autorización administrativa, la declaración, en concreto, de utilidad pública, la aprobación del Proyecto Técnico Administrativo y la autorización de construcción.

TITULAR DE LA INSTALACIÓN

El domicilio social del titular es:

RED ELÉCTRICA DE ESPAÑA, S.A.U.

Paseo Conde de los Gaitanes, 177

28109-Alcobendas-Madrid

Y a efectos de notificación en:

RED ELÉCTRICA DE ESPAÑA, S.A.U.

Cami Son Fangos, 100\n

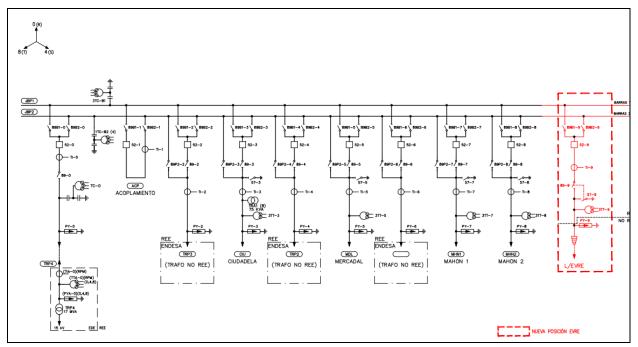
07007-Palma-Islas Baleares

- 1.3 RELACIÓN DE ADMINISTRACIONES, ORGANISMOS O EMPRESAS DE SERVICIO PÚBLICO O SERVICIOS DE INTERÉS GENERAL, EN LA PARTE QUE LA INSTALACIÓN PUEDA AFECTAR A BIENES Y DERECHOS A SU CARGO
 - Excmo. Ayuntamiento de Maó.
 - ENDESA Distribución S.L.
 - AESA (Ministerio de Fomento)
 - Dirección general de Política Energética y Minas del Ministerio para la Transición Ecológica y el Reto Demográfico a los efectos de lo preceptuado en el artículo 114 del RD 1955/2000.
 - Ministerio para la Transición Ecológica y el Reto Demográfico.

1.4 CARACTERÍSTICAS TÉCNICAS A EFECTOS RETRIBUTIVOS

Parque de 132 kV

• Nuevas posiciones de interruptor a instalar:


Número de posiciones equipadas

• Características:

Tecnología	AIS
Instalación	Convencional exterior
Configuración	Doble barra
Intensidad de cortocircuito de corta duración	31,5 kA

1.5 ESQUEMA DE LA ACTUACIÓN

La actuación consiste en la ampliación de la subestación DRAGONERA 132 kV tipo AIS con configuración de Doble barra. El esquema unifilar del parque de 132 kV donde se recogen las actuaciones a realizar se muestra a continuación.

Subestación eléctrica DRAGONERA, parque 132 kV

CAPÍTULO 2. DESCRIPCIÓN DE LAS OBRAS EN LA SUBESTACIÓN DE DRAGONERA

2.1 GENERALIDADES E HIPÓTESIS DE DISEÑO

2.1.1 Características básicas y emplazamiento

La subestación de DRAGONERA 132 kV está situada en el término municipal de Maó, provincia de Islas Baleares, Comunidad Autónoma de las Islas Baleares.

La ubicación queda reflejada en el plano de situación geográfica Documento nº3 Planos del presente proyecto.

Atendiendo las características ambientales del emplazamiento seleccionado esta instalación se realiza con tecnología AIS.

De acuerdo con los criterios establecidos en el *Procedimiento de Operación 13.3 Instalaciones de la Red de Transporte: Criterios de diseño, requisitos mínimos y comprobación de equipamiento y puesta en servicio aprobado en resolución de 11 de Febrero de 2005, de la Secretaría General de la Energía, por el Ministerio de Industria, Turismo y Comercio, se ha proyectado que el parque de 132 kV de la subestación DRAGONERA se construya con configuración de Doble barra.*

2.1.2 Hipótesis de diseño

Condiciones ambientales

Las condiciones ambientales del emplazamiento son las siguientes:

- Altura media sobre el nivel del mar...... 64 m
- Temperaturas extremas...... + 40° C/-20° C
- Nivel de niebla Medio

Para el cálculo de la sobrecarga del viento, se ha considerado viento horizontal con velocidad de 140 km/h. §

Los embarrados y tendidos altos se han diseñado considerando la Zona A según "Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión y sus instrucciones técnicas complementarias. - Real Decreto 223/2008 de 15 de febrero de 2008" y para el resto de la instalación con las sobrecargas consideradas en el Documento Básico de Seguridad Estructural SE-AE "Seguridad Estática. Acciones en la Edificación" del Código Técnico de la Edificación. Real Decreto 314/2006 de 17 de marzo, del Ministerio de la Vivienda.

Respecto a las acciones sísmicas, la norma NCSR-02 contempla la necesidad de su aplicación en construcciones de especial importancia, como ésta, cuando la aceleración sísmica básica sea superior o igual a 0,04 g, siendo en Maó de 0,04g por lo que sí se tendrán en cuenta estas acciones sísmicas.

Datos de cortocircuito

El proyecto considera una intensidad de cortocircuito de corta duración de 31,5 kA.

Las intensidades de cortocircuito previstas en el horizonte 2020 para el parque de 132 kV son las siguientes:

- Monofásica 3.41 kA
- Trifásica 3 94 kA

Estos valores son menores que los de la intensidad de cortocircuito de corta duración de diseño.

• Datos del terreno a efectos de la red de tierras

A efectos de cálculo se considera una resistividad del terreno de 200 ohm*m.

2.2 CARACTERÍSTICAS GENERALES DE LA INSTALACIÓN

2.2.1 Descripción general de la instalación

El parque de 132 kV en la subestación de DRAGONERA responde a las siguientes características principales:

-	Tensión nominal	132 kV
-	Tensión más elevada para el material (Um)	145 kV
-	Tecnología	AIS
-	Instalación	Convencional exterior
-	Configuración	Doble barra
-	Intensidad de cortocircuito de corta duración	31,5 kA

2.2.2 Configuración y disposición general de la instalación

	Existente		Con la ampliación		
Calle	Posición	N° de inte- rruptores	Posición	N° de inte- rruptores	N° de inte- rruptores nuevos
0	Transforma- dor distribu- ción TRP4	1	Transforma- dor distribu- ción TRP4	1	0
1	Acopla- miento de barras princi- pales ACP	1	Acopla- miento de barras princi- pales ACP	1	0
2	Transforma- dor distribu- ción TRP3	1	Transforma- dor distribu- ción TRP3	1	0
3	Ciudadela	1	Ciudadela	1	0
4	Transforma- dor distribu- ción TRP2	1	Transforma- dor distribu- ción TRP2	1	0
5	Mercadal	1	Mercadal	1	0
6	Transforma- dor distribu- ciónTRP1	1	Transforma- dor distribu- ciónTRP1	1	0
7	Mahon 1	1	Mahon 1	1	0
8	Mahon 2	1	Mahon 2	1	0
9		0	EvRE	1	1

La configuración y disposición general de la instalación queda reflejada en los planos: esquema unifilar simplificado, planta general y secciones generales del Documento nº3 Planos del presente Proyecto.

2.3 SISTEMA ELÉCTRICO

2.3.1 Magnitudes eléctricas

Las magnitudes eléctricas básicas de diseño adoptadas para el parque de 132 kV:

- Tensión más elevada para el material (Ve)......145 kV
- Neutro......Rígido a tierra
- Intensidad de cortocircuito trifásico (valor eficaz) 31,5 kA

- Tiempo de extinción de la falta......0,5 seg
- Nivel de aislamiento:
 - Tensión soportada a frecuencia industrial de corta duración 275 kV
- Línea de fuga mínima para aisladores................................4.495 mm (31,5 mm/kV)

2.3.2 Distancias

Las distancias mínimas adoptadas para el parque de 132 kV son las indicadas a continuación, según las magnitudes eléctricas indicadas y la normativa aplicable.

Para conductores rígidos (embarrados de interconexión):

Distancias fase-tierra:

- Conductor-estructura......1.300 mm

Distancias fase-fase:

- Conductores paralelos1.300 mm

Las distancias adoptadas son válidas, dado que la altura de la instalación sobre el nivel del mar es inferior a 1.000 m.

• Para conductores tendidos:

Este tipo de conductores se verán sometidos bajo ciertas condiciones de defecto a movimientos de gran amplitud, los cuales, y durante algunos instantes, aproximan entre sí a los conductores de fase hasta unas distancias inferiores a las normalizadas.

Por consiguiente, es posible considerar unas distancias mínimas temporales de aislamiento inferiores a las normalizadas ya que debe tenerse en cuenta que:

Los tipos de sobretensiones a considerar son reducidos y sólo deben considerarse aquellas que pudieran ser simultáneas al propio defecto de cortocircuito y con más precisión al momento en el que los conductores se aproximan.

No es por lo tanto, necesario considerar sobretensiones de tipo rayo, ya que es altamente improbable que coincidan con un cortocircuito entre fases.

Por otro lado, la longitud de vano que experimenta la reducción de la distancia de aislamiento es pequeña, y su duración es muy reducida, de forma que la posibilidad de fallo se hace mínima. En este sentido, hay que tener en cuenta que, en el caso de conductores rígidos se elimina la posibilidad de una falta producida por el movimiento de los conductores tras una falta en las salidas de línea.

Basándose en lo anterior, se adoptan las siguientes distancias de aislamiento temporal en conexiones tendidas:

- Conductor-estructura......650 mm
- Conductor-conductor......650 mm

Para la determinación de este tipo de distancias, se han tenido en cuenta los siguientes criterios básicos de implantación:

- Las distancias serán tales que permitirán el paso del personal y herramientas por todos los puntos del parque de Convencional exterior bajo los elementos en tensión sin riesgo alguno.

- Deberán permitir el paso de vehículos de transporte y de elevación necesarios para el mantenimiento o manipulación de elementos de calles en descargo, bajo el criterio de gálibos estipulados.

No se han tenido en cuenta, por lógica, las exigencias que se deriven de la realización de trabajos de conservación bajo tensión. En estos casos será necesario aumentar las distancias entre fases con respecto a la disposición física preestablecida, con lo que el resto de los condicionantes se cumplirá con un margen mayor.

Al considerar todo lo anterior, y de acuerdo con lo que se indica, se establecerán las siguientes distancias en el parque de 132 kV:

- Entre ejes de aparellaje 3.000 mm
- Anchura de calle 11.000 mm
- Altura de embarrados de interconexión entre aparatos.... 5.000 mm

Como se puede observar, las distancias mínimas son muy superiores a la preceptuada en la normativa.

Con respecto a la altura de las partes en tensión sobre viales y zonas de servicio accesibles al personal, la de la partes en tensión sobre viales y zonas de servicio accesibles al personal, la de la parte estructura, prescribe una altura mínima de 2.300 mm a zócalo de aparatos, lo que se garantizará con las de la parte estructuras soporte del aparellaje.

2.3.3 Embarrados

Los conductores del parque de 132 kV estarán dispuestos en tres niveles:

- Embarrados bajos, conexiones entre aparatos a 5 m de altura. Se realizarán con tubo de aluminio.
- Embarrados altos, barras principales de tubo de aluminio a 9.2 m de altura en configuración apoyada sobre aisladores soporte.
- Tendidos altos de cable dúplex de aluminio-acero a 13 m de altura.
- Embarrados en tubo

Las características de los tubos destinados a los embarrados principales de 132 kV serán las siguientes:

- Aleación AlMgSiO, 5 F22

Las características de los tubos destinados a la interconexión del aparellaje serán las siguientes:

- Aleación AlMgSiO, 5 F22
- Diámetro exterior/interior...... 100/88 mm
- Intensidad admisible permanente a 85° 2.736 A

Los tubos no podrán ser soldados en ningún punto o tramo, por lo que se ha previsto que su suministro se realice en tiradas continuas y en tramos conformados, cortados y curvados en fábrica, debiéndose proceder a pie de obra tan sólo a su limpieza y montaje posterior.

En todos los tramos superiores a 6 m se ha previsto la instalación en el interior de la tubería de cables de amortiguación. Estos serán del mismo tipo y características indicados para los embarrados en cable en formación simple.

Disposición y tipo de embarrado

Se adaptará al nivel en que los conductores están dispuestos en el parque de 132 kV:

- Tendidos altos de cable dúplex de aluminio-acero a 13 m de altura.
- Embarrados con cable

Los tendidos altos estarán formados por cables de aluminio con alma de acero tendrá con la siguiente configuración y características:

-	Formación	. Dúplex
-	Tipo	. RAIL
-	Sección total del conductor	. 516,82 mm²
-	Diámetro exterior	. 29,61 mm

Intensidad admisible permanente a 35° C de Tamb y 85° C en conductor.... 2.064 A

El amarre de las conexiones tendidas a los pórticos se realizará mediante doble cadena de aisladores de vidrio y contemplada con la piecería adecuada.

La unión entre conductores y entre éstos y el aparellaje se realizará mediante piezas de conexión provistas de tornillos de diseño embutido, y fabricadas según la técnica de la masa anódica.

2.3.4 Características de la aparamenta

Se relaciona a continuación el aparellaje de la instalación, con el nivel de aislamiento definido anteriormente (AIS) en el parque de 132 kV.

Equipos con aislamiento en Aire

Interruptores automáticos:

-	Tensión más elevada	145 kV		
-	Intensidad nominal	2.000 A		
-	Intensidad límite térmica	31.5 kA		
-	Frecuencia nominal	50 Hz		
-	Tipo de mando	Mecánico resortes		
-	Tecnología cámara de corte	SF6		
Tra	Transformadores de intensidad:			

- - Tensión más elevada......145 kV

Las relaciones de transformación, potencias y clases de precisión se adaptarán a lo preceptuado en el Reglamento unificado de puntos de medida del sistema eléctrico (Real Decreto 1110/2007) y al sistema de protección y medida.

- Transformadores de tensión

Las relaciones de transformación, potencias y clases de precisión se adaptarán a lo preceptuado en el Reglamento unificado de puntos de medida del sistema eléctrico (Real Decreto 1110/2007) y al sistema de protección y medida.

Seccionadores de barras:

Los seccionadores de barras del Parque de 132 kV serán de tipo rotativo de tres columnas, de mando tripolar manual, y con las siguientes características:

-	Tensión más elevada	145 kV
-	Intensidad nominal	2.000 A
-	Intensidad límite térmica	31.5 kA
-	Tipo de seccionador	Rotativo
-	Tipo de mando	Tripolar
Sec	ccionadores de línea:	
-	Tensión más elevada	145 kV
-	Intensidad nominal	2.000 A
-	Intensidad límite térmica	31.5 kA
-	Intensidad límite dinámica	79 kA (valor cresta)
-	Frecuencia nominal	50 Hz
-	Tipo de seccionador	Rotativo
-	Tipo de mando	Tripolar
	- - Sec - - -	- Intensidad límite térmica

- Seccionadores de Puesta a Tierra: Tripolar, con cuchilla de puesta a tierra, de mando tripolar manual, y de las siguientes características:

Pararrayos:

Se dispondrán autoválvulas en la posición de llegada de línea, junto a la botella terminal del cable de 132 kV del promotor. Las características estarán definidas por el promotor.

Aisladores de apoyo:

Los aisladores soporte para apoyo de los embarrados principales del parque de 132 kV se seleccionan con larga línea de fuga (LLF) y tienen las siguientes características:

-	Tipo	. C10-650 (LLF)
-	Carga de rotura a flexión	. 10.000 N
-	Carga de rotura a torsión	. 4.000 Nm
_	Longitud línea de fuga	. ≥5.650 mm

2.4 RED DE TIERRAS

2.4.1 Red de tierras inferiores

Con el fin de conseguir tensiones de paso y contacto seguras, la subestación está dotada de una malla de tierras inferiores formada por cable de cobre, enterrada en el terreno, formando retículas que se extienden por todas las zonas ocupadas por las instalaciones, incluidas cimentaciones, edificios y cerramiento.

Se conectarán a la red de tierras de la subestación todas las partes metálicas no sometidas a tensión normalmente, pero que pudieran estarlo como consecuencia de averías, sobretensiones por descargas atmosféricas o tensiones inductivas, como la estructura metálica, las bases del aparellaje y los neutros de transformadores de medida, etc.

Estas conexiones se fijarán a la estructura y carcasas del aparellaje mediante tornillos y grapas especiales, que aseguran la permanencia de la unión, haciendo uso de soldaduras aluminotérmicas de alto poder de fusión, para las uniones bajo tierra, ya que sus propiedades son altamente resistentes a la corrosión galvánica.

Para la comprobación de las condiciones de seguridad de la red de tierras se consideran las intensidades de cortocircuito previstas en el horizonte 2020 (ver el apartado 2.1.2). En el desarrollo final de la instalación, la malla de tierra se dimensiona para soportar las intensidades de cortocircuito de corta duración de diseño.

En el Anexo de Cálculos se han reflejado los datos y cálculos de la malla a instalar. Este sistema de puesta a tierra aparece reflejado en el Documento nº3 Planos del presente Proyecto.

2.4.2 Red de tierras superiores

Con el objeto de proteger los equipos de descargas atmosféricas directas, la subestación está dotada con una malla de tierras superiores, unida a la malla de tierra de la instalación a través de robustos elementos metálicos, lo que garantiza una unión eléctrica suficiente con la malla y la protección frente a descargas atmosféricas de toda la instalación.

2.5 ESTRUCTURAS METÁLICAS

Las estructuras metálicas y soportes del aparellaje complementario de la nueva posición se han diseñado con perfiles de acero. Todas las estructuras y soportes serán galvanizados en caliente como protección contra la corrosión.

Para el anclaje de estas estructuras, se dispondrán cimentaciones adecuadas a los esfuerzos que han de soportar, construidas a base de hormigón y en las que quedarán embebidos los pernos de anclaje correspondientes.

2.6 SISTEMAS DE CONTROL Y PROTECCIÓN

2.6.1 Sistemas de control

El sistema de control de la instalación está formado por una unidad central, puesto de operación duplicado y unidades locales distribuidas. La unidad central es la encargada de comunicarse con el despacho eléctrico.

Se instalará en el edificio de mando una unidad local asociada a la posición que recogerá la información para el telecontrol y permitirá la funcionalidad de control (mando, alarmas y señalizaciones) para la operación local de mantenimiento.

2.6.2 Sistemas de protecciones

Conforme a lo requerido en los "Criterios generales de protección del Sistema Eléctrico Peninsular" se ha previsto la instalación de los siguientes sistemas de protección:

Embarrados:

Se ha previsto la integración de la nueva posición en la actual protección diferencial de barras (87B). este equipo está preparado para la ampliación.

• Sistema de protección de interruptor:

Se ha previsto un relé de protección equipado con las siguientes funciones:

- Discordancia de polos (2).
- Comprobación de sincronismo y acoplamiento de redes (25-25AR).
- Protección por mínima tensión (27).
- Oscilografía.
- Fallo de interruptor (50S-62).
- Vigilancia de los circuitos de disparo (3).
- Posiciones de línea:

En cada posición se ha previsto un bastidor de relés equipado con dos sistemas de protección independientes con las siguientes funciones:

- Protección de principio diferencial (87).
- Sobreintensidad direccional de neutro (67N), para la detección de faltas altamente resisti-vas
- Localizador de faltas y oscilografía.
- Imagen térmica (49).
- Protección de distancia (21) como respaldo.
- Protección contra sobretensiones (59).

2.7 SERVICIOS AUXILIARES

Los servicios auxiliares de la subestación se dividen en Servicios Auxiliares de Corriente Alterna (ca) y Servicios Auxiliares de Corriente Continua (cc). Las tensiones nominales serán 400/230 V, 50 Hz de c.a. y 125 V y 48 V de c.c.

Servicios Auxiliares de Corriente Alterna.

Se contemplan las siguientes posibles fuentes de alimentación de c.a. a la ampliación de la subestación:

- Alimentación desde un trafo de tensión desde la red de transporte.
- Alimentación desde una línea de M.T. y/o centro de transformación MT/BT.
- Grupo electrógeno.
- Apoyo monofásico 220/127 (ADIF, si es una SE para ADIF).

Las fuentes de alimentación que se equipen alimentarán un Cuadro Principal de Corriente Alterna que dispone de dos barras unidas por un interruptor de acoplamiento. La conmutación de las fuentes de alimentación principales es automática y se realiza en el Cuadro Principal de Corriente Alterna mediante un autómata programable.

Las condiciones de explotación de la instalación dependerán del tipo de fuente de alimentación que se tenga.

Servicios Auxiliares de Corriente Continua.

Desde el Cuadro Principal de Corriente Alterna se alimenta a los equipos rectificador-batería que constituyen las fuentes autónomas que dan seguridad funcional a la Subestación Eléctrica. Cada equipo rectificador-batería podrá alimentarse de manera conmutada desde ambas barras del Cuadro Principal de Corriente Alterna.

El Cuadro Principal de Corriente Continua de 125 Vcc, está formado por dos juegos de barras con acoplamiento. Cada uno de uno de estos juegos está alimentado, en condiciones normales, desde su correspondiente equipo rectificador-batería de 125 Vcc. Este cuadro da, entre otros, servicio a las alimentaciones necesarias de control y de maniobra.

El Cuadro Principal de Corriente Continua de 48 Vcc, estará formado por dos juegos de barras cada uno de ellos alimentado desde el correspondiente equipo rectificador-batería de 48Vcc. El diseño de este cuadro garantiza la alimentación permanente y la conmutación de las fuentes sin paso por cero, para aquellas salidas en las que esta condición es esencial.

2.8 SISTEMA DE TELECOMUNICACIONES

Se ha previsto complementar la red de telecomunicaciones existente con los equipos precisos que permitan asegurar el correcto funcionamiento del telecontrol y del telemando, de los sistemas de protección y de las necesidades de telegestión remota de los equipos de la instalación.

Telecomunicaciones para funciones de protección

Para la comunicación de las protecciones de línea se contempla un enlace redundante con fibra monomodo para establecer las comunicaciones. No obstante, el alcance concreto vendrá definido en la fase de proyecto dentro del proyecto integrado de telecomunicaciones.

Red de fibra óptica en la subestación

Se ha previsto una red de fibra óptica, en configuración de doble estrella con cables de fibra multimodo, desde el armario de fibra multimodo, hasta las dependencias, interiores o exteriores del edificio, que requieren servicios de comunicación de protecciones, servicios de telecontrol, telegestión y sincronización horaria, dando con ello servicio a las nuevas posiciones.

Telegestión de protecciones, sistemas de telecontrol y equipos de comunicaciones.

Todos los equipos de protecciones, telecontrol y comunicaciones asociados a la posición de este proyecto van a ser telegestionados, por medio de su conexión a la red de servicios IP de la red de transporte de RED ELÉCTRICA. Esta red se distribuye por la subestación soportada por la red de fibra multimodo.

Red de Telefonía

La red de telefonía corporativa de RED ELÉCTRICA se ha previsto que sea extendida y desplegada en esta subestación por medio del uso de equipos y terminales preparados para el establecimiento de comunicaciones de voz. Esta soportada por el resto de las redes desplegadas en la subestación y permite el acceso a las funcionalidades de comunicación vocal normalizadas en RED ELÉCTRICA.

2.9 OBRA CIVIL Y EDIFICACIÓN

2.9.1 Movimiento de tierras

2.9.2 Drenajes

En la plataforma se han previsto los tubos drenantes necesarios para evacuar las aguas en un tiempo razonable, de forma que no se produzca acumulación de agua en la instalación y se consiga la máxima difusión posible de las aguas de lluvia realizada la ampliación de la subestación.

La recogida de las aguas residuales se ha previsto con depósito estanco de poliéster reforzado con fibra de vidrio capaz de retener por un periodo determinado de tiempo las aguas servidas domésticas y equipado con tapa de aspiración y vaciado.

Los trabajos a acometer requieren la conexión a la red de pluviales existentes.

2.9.3 Cimentaciones, viales y canales de cables

Se han previsto las cimentaciones, canales de cables y viales necesarios conforme al plano incluido en el Documento nº3 Planos del presente proyecto.

Las nuevas cimentaciones a realizar serán las correspondientes al nuevo aparellaje a instalar.

Se ampliará la red de canales. Los canales de cables serán prefabricados, del tipo: A en acceso al aparellaje y B en principales de posición.

2.9.4 Accesos

Se mantiene el acceso existente a la instalación.

2.9.5 Edificios y casetas

Edificio de mando y control

No será necesaria la construcción de nuevos edificios de mando y control. Se utilizarán los existentes en la subestación.

Casetas de relés

No será necesaria la construcción de nuevas casetas de relés.

2.9.6 Cerramiento

Se ampliará el cerramiento existente que dispone la subestación con el espacio ampliado para la nueva posición.

2.10 INSTALACIONES DE ALUMBRADO Y FUERZA

2.10.1 Alumbrado

Calles y posiciones

De acuerdo con la normalización, el alumbrado normal de calles se realizará con proyectores orientables, montados a menos de 3 m de altura. Serán de haz semi-extensivo, para que con el apuntamiento adecuado se pueden obtener 50 lux en cualquier zona del parque de intemperie.

Viales

Alumbrado con luminarias montadas sobre báculos de 3 m de altura, para un nivel de iluminación de 5 lux.

Se dispondrá, asimismo, de alumbrado de emergencia constituido por grupos autónomos colocados en las columnas de alumbrado, en el caso de viales perimetrales y sobre la misma estructura que el alumbrado normal o tomas de corriente en el parque de intemperie. El sistema de emergencia será telemandado desde el edificio de control y los equipos tendrán una autonomía de una hora.

Se dispondrá de fotocélula para el encendido del alumbrado exterior.

Edificio y casetas

Los niveles de iluminación en las distintas áreas serán de 500 lux en salas de control y de comunicaciones, y de 300 lux en sala de servicios auxiliares, taller y casetas de relés.

Los alumbrados de emergencia del edificio y casetas estarán situados en las zonas de tránsito y en las salidas. Su encendido será automático en caso de fallo del alumbrado normal, si así estuviese seleccionado, con autonomía de una 1 hora.

2.10.2 Fuerza

Se instalarán tomas de fuerza combinados de 3P+T (32 A) y 2P+T (16 A) en cuadros de intemperie anclados a pilares próximos a los viales, de forma que cubran el parque considerando cada conjunto con un radio de cobertura de 25 m.

2.11 SISTEMA CONTRAINCENDIOS Y ANTIINTRUSISMO

Sistema Contraincendios

Se dispondrá de detectores de incendios en todos los edificios y casetas de la Subestación. Serán del tipo analógicos ópticos, excepto en el almacén y campana exterior que serán termo-velocimétricos.

También se dispondrán de los correspondientes extintores en el edificio tanto de CO2 como de polvo, así como carros extintores de 50 kg de polvo para el parque.

Sistema Anti-intrusismo

El sistema anti-intrusismo estará compuesto por contactos magnéticos, detectores volumétricos de doble tecnología y sirena exterior.

Se adecuará una central para controlar el sistema de incendios e intrusión, encargado de activar y transmitir las alarmas generadas.

Se dispondrá de cámaras de seguridad en el parque ubicadas según indicaciones del departamento de seguridad de RED ELÉCTRICA.

CAPÍTULO 3. NORMATIVA APLICADA

El presente Proyecto ha sido redactado básicamente conforme el Real Decreto 337/2014, de 9 de mayo, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23 y a la norma UNE-EN 62271-1:2009 Aparamenta de alta tensión (de la derivada de la Directiva CENELEC).

En el Documento 2: Pliego de Condiciones Técnicas se especifican en detalle las normas y reglamentos específicos aplicados para la redacción y ejecución del presente proyecto.

CAPÍTULO 4. PLAZO DE EJECUCIÓN Y FECHA PREVISTA DE PUESTA EN SERVICIO

Se estima en 7 meses el tiempo necesario para la ejecución de las obras que se detallan en el presente Proyecto de Ejecución.

Madrid, mayo de 2022 El Ingeniero industrial

David González Jouanneau

Jefe del Departamento de Ingeniería de Subestaciones

Red Eléctrica de España, S.A.U.

AMPLIACIÓN DE LA SUBESTACIÓN DRAGONERA 132 kV. NUEVA POSICIÓN EVRE

ANEXO 1 CÁLCULOS

Dirección de Ingeniería y Construcción Dpto. Ingeniería de Subestaciones

Índice

CAPÍTULO 1.	OBJETO	4
CAPÍTULO 2.	SUBESTACIÓN 132 kV	5
2.1 CÁL	CULO MECÁNICO DE EMBARRADOS RÍGIDOS	5
2.1.1	Hipótesis de diseño	5
2.1.2	Condiciones de la instalación	
2.1.3	Normativa aplicable	7
2.1.4	Características de los materiales / equipos a instalar	7
2.1.5	Cálculo mecánico del embarrado PRINCIPAL.	
2.5.5.1	Cálculo Corriente de cortocircuito	9
2.5.5.2	Tensión en el tubo	10
2.5.5.3	Reacciones sobre aisladores soporte	14
2.5.5.4	Flecha en el tubo	15
2.5.5.5	Elongación del embarrado	16
2.5.5.6	Esfuerzo térmico en cortocircuito	16
2.5.5.7	Intensidad nominal de las barras	17
2.1.6	Cálculo mecánico del embarrado SECUNDARIO	17
2.5.6.1	Corriente de cortocircuito	17
2.5.6.2	Tensión en el tubo	18
2.5.6.3	Reacciones sobre aisladores soporte	22
2.5.6.4	Flecha en el tubo	23
2.5.6.5	Elongación del embarrado	23
2.5.6.6	Esfuerzo térmico en cortocircuito	24
2.5.6.7	Intensidad nominal de las barras	24
2.2 CÁL	CULOS DE EFECTO CORONA.	25
2.2.1	Cálculo de la tensión disruptiva	25
2.3 DET	ERMINACIÓN DE DISTANCIAS MÍNIMAS DE EMBARRADOS TENDIDOS	27
2.3.1	Hipótesis de diseño	27
2.3.2	Normativa aplicable	28
2.3.3	Desplazamiento del vano con viento	28

2.3.4	Efecto en conductores por corriente de cortocircuito	29
2.3.5	Aproximación de conductores	32
2.3.6	Distancia entre fases en cortocircuito	33
2.3.7	Distancias mínimas a adoptar	34
2.3.8	Efectos sobre conductores en haz	34
2.4 REI	D DE TIERRAS INFERIORES	35
2.5 REI	D DE TIERRAS SUPERIORES	42
CVDĮTI II U 3	CONCLUSIÓN	11

CAPÍTULO 1. OBJETO

El objeto de este documento es justificar, desde el punto de vista técnico, las soluciones adoptadas en la subestación para los elementos más críticos de su configuración y, asimismo, para permitir la entrada y salida de la línea en la subestación.

Este documento incluye la justificación de los siguientes elementos:

- Determinación de distancias eléctricas mínimas en embarrados rígidos.
- Determinación de distancias eléctricas mínimas en embarrados tendidos.
- Determinación de efecto corona.
- Red de tierras inferiores.
- Red de tierras superiores.

Cada apartado contiene la normativa aplicable en cada caso, las hipótesis de diseño, los cálculos justificativos, criterios de validación y conclusiones.

CAPÍTULO 2. SUBESTACIÓN **132**[*kV*]

2.1 CÁLCULO MECÁNICO DE EMBARRADOS RÍGIDOS

2.1.1 Hipótesis de diseño.

La corriente de cortocircuito trifásica prevista en el horizonte 2020 es de 16,1 [kA]. Para permitir evoluciones futuras del sistema eléctrico sin impacto en la nueva subestación, se adoptan los siguientes valores de diseño:

Icc simétrica (Ik'') [kA]	31,5
R/X (sistema) [Ω/m]	0,07
Duración del cortocircuito (Tk) [seg]	0,5

Conductor rígido.

Se van a realizar interconexiones con dos tipos de tubos:

Tubo en embarrado principal		
Aleación	E-AlMgSi0,5, F22	
Diámetro exterior (D) [mm]	150	
Diámetro interior (d) [mm]	134	

Tubo en embarrado secundario		
Aleación	E-AlMgSi0,5, F22	
Diámetro exterior (D) [mm]	100	
Diámetro interior (d) [mm]	88	

Condiciones del vano.

La geometría y condiciones de anclaje en los extremos de los vanos considerados como más desfavorables son las siguientes:

Vano A (Barras principales)	
Longitud de vano [m]	13,0
Distancia entre fases [m]	3,0

Anclajes	Fijo - Elástico
Vano B (Conexión entre aisladores so- porte)	
Longitud de vano [m]	7
Distancia entre fases [m]	3
Anclajes	Fijo - Elástico

2.1.2 Condiciones de la instalación

La altura a la que se encuentra la subestación sobre el nivel del mar demarca la zona en la que se encuentra según la norma "ITC-LAT 2013", a partir de esto se realizan las consideraciones dependientes a la climatología que indican las normas "ITC-LAT 2013" y "EN 50341-1-2012"

 Sobrecarga debida al Hielo: para la consideración de este parámetro se utilizará la siguiente expresión que es proporcionada por la norma:

Sobrecarga debida al Hielo =
$$P_1 \cdot \sqrt{d_{exterior}} \left[\frac{kg}{m} \right]$$

Donde:

 P_1 : Parámetro que varía entre (0, 0,18 y 0,36) dependiendo de la altitud de la subestación. $d_{exterior}$: Diámetro exterior del tubo.

Por lo cual tendremos los siguientes resultados:

Coeficiente de norma (P1)	0,000
Sobrecarga debida al Hielo Vano A [kg/m]	0,000
Sobrecarga debida al Hielo Vano B [kg/m]	0,000

 Presión de viento: para la consideración de este parámetro se deben llevar a cabo la determinación de la densidad del aire a la altura correspondiente y la velocidad máxima del viento que se tendrá como parámetro, y las expresiones correspondientes son:

$$P_{viento} = \frac{1}{2} \rho V_h^2 \left[\frac{N}{m^2} \right]$$

Donde:

ρ: Densidad del aire a la altura determinada, se define por medio de la siguiente expresión:

$$\rho = \rho_{aire} \frac{288}{T'} e^{-1.2 \cdot 10^{-4} \cdot H} \left[\frac{kg}{m^3} \right]$$

T': Diferencia de temperatura ambiente a la temperatura en servicio.

H: Altura a la que se encuentra la subestación.

 V_h : Velocidad de viento máxima dada por la norma por el nivel de tensión, $V_h = 140 \frac{Km}{h}$

Con lo cual tendremos que:

Densidad del aire calculada (ρ) [kg/m3]	1,143
Presión del viento (N/m2)	864,065

2.1.3 Normativa aplicable

Los cálculos que se realizan a continuación cumplen con la normativa vigente en España referente a este tipo de instalaciones y está basado en las siguientes Normas y Reglamentos:

- Reglamento sobre condiciones técnicas y garantías de seguridad en centrales eléctricas, subestaciones y centros de transformación. R. D. 337/2014 de 9 de mayo y sus Instrucciones Técnicas Complementarias.
- Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión y sus instrucciones técnicas complementarias. - Real Decreto 223/2008 de 15 de febrero de 2008.
- Norma CEI 865 de 1993, Cálculo de los efectos de las corrientes de cortocircuito.
- Norma UNE EN 60865-1, Corrientes de cortocircuito, cálculo de efectos. Parte 1: Definiciones y métodos de cálculo.
- Norma CEI 909-2001, Cálculo de corrientes de cortocircuito en redes de corriente alterna trifásica.
- Norma VDE 0102.
- Norma DIN 43670.

Si al aplicar las normas y reglamentos anteriores se obtuviesen valores que discrepasen con los que pudieran obtenerse con otras normas o métodos de cálculo, se considerará siempre el resultado más desfavorable, con objeto de estar siempre del lado de la seguridad.

2.1.4 Características de los materiales / equipos a instalar

Conductor rígido	
Tubo en embarrado principal	
Aleación	E-AIMgSi0,5, F22
Diámetro exterior (D) [mm]	150

Diámetro interior (d) [mm] 134 Espesor de la pared (e) [mm] 8 Peso propio unitario (Ppt) [kg/m] 9,64 Sección (A) [mm2] 3569 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 902 Momento resistente (W) [cm3] 120 Módulo de elasticidad (Young) (E) [N/mm2] 70000 Límite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/°K] 0,000023 Intensidad máxima [A] 3250 Densidad de corriente en cortocircuito del tubo [A/mm2] 116 Tubo en embarrado secundario E-AlMgSiO,5, F22 Diámetro exterior (D) [mm] 100 Diametro interior (d) [mm] 88 Espesor de la pared (e) [mm] 6 Peso propio unitario (Ppt) [kg/m] 4,78 Sección (A) [mm2] 1772 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 70000 Limite de fluencia mínimo del material (Rpo2) [N/mm2] 160		
Peso propio unitario (Ppt) [kg/m] 9,64 Sección (A) [mm2] 3569 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 902 Momento resistente (W) [cm3] 120 Módulo de elasticidad (Young) (E) [N/mm2] 70000 Limite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/°K] 0,000023 Intensidad máxima [A] 3250 Densidad de corriente en cortocircuito del tubo [A/mm2] 116 Tubo en embarrado secundario Aleación E-AlMgSi0,5, F22 Diámetro exterior (D) [mm] 100 Diámetro interior (d) [mm] 88 Espesor de la pared (e) [mm] 6 Peso propio unitario (Ppt) [kg/m] 4,78 Sección (A) [mm2] 1772 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Diámetro interior (d) [mm]	134
Sección (A) [mm2] 3569 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 902 Momento resistente (W) [cm3] 120 Módulo de elasticidad (Young) (E) [N/mm2] 70000 Limite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/°K] 0,000023 Intensidad máxima [A] 3250 Densidad de corriente en cortocircuito del tubo [A/mm2] 116 Tubo en embarrado secundario Aleación E-AIMgSi0,5, F22 Diámetro exterior (D) [mm] 100 Diámetro interior (d) [mm] 88 Espesor de la pared (e) [mm] 6 Peso propio unitario (Ppt) [kg/m] 4,78 Sección (A) [mm2] 1772 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Espesor de la pared (e) [mm]	8
Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 902 Momento resistente (W) [cm3] 120 Módulo de elasticidad (Young) (E) [N/mm2] 70000 Límite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/°K] 0,000023 Intensidad máxima [A] 3250 Densidad de corriente en cortocircuito del tubo [A/mm2] 116 Tubo en embarrado secundario Aleación E-AlMgSio,5, F22 Diámetro exterior (D) [mm] 100 Diámetro interior (d) [mm] 88 Espesor de la pared (e) [mm] 6 Peso propio unitario (Ppt) [kg/m] 4,78 Sección (A) [mm2] 1772 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Peso propio unitario (Ppt) [kg/m]	9,64
Momento de inercia (J) [cm4] 902 Momento resistente (W) [cm3] 120 Módulo de elasticidad (Young) (E) [N/mm2] 70000 Límite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/°K] 0,000023 Intensidad máxima [A] 3250 Densidad de corriente en cortocircuito del tubo [A/mm2] 116 Tubo en embarrado secundario Aleación E-AlMgSi0,5, F22 Diámetro exterior (D) [mm] 100 Diámetro interior (d) [mm] 88 Espesor de la pared (e) [mm] 6 Peso propio unitario (Ppt) [kg/m] 4,78 Sección (A) [mm2] 1772 Carga de rotura del material (aR) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Sección (A) [mm2]	3569
Momento resistente (W) [cm3] 120 Módulo de elasticidad (Young) (E) [N/mm2] 70000 Límite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/°K] 0,000023 Intensidad máxima [A] 3250 Densidad de corriente en cortocircuito del tubo [A/mm2] 116 Tubo en embarrado secundario Aleación E-AIMgSi0,5, F22 Diámetro exterior (D) [mm] 100 Diámetro interior (d) [mm] 88 Espesor de la pared (e) [mm] 6 Peso propio unitario (Ppt) [kg/m] 4,78 Sección (A) [mm2] 1772 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Carga de rotura del material (a _R) [N/mm2]	195
Módulo de elasticidad (Young) (E) [N/mm2] 70000 Límite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/°K] 0,000023 Intensidad máxima [A] 3250 Densidad de corriente en cortocircuito del tubo [A/mm2] 116 Tubo en embarrado secundario Aleación E-AIMgSi0,5, F22 Diámetro exterior (D) [mm] 100 Diámetro interior (d) [mm] 88 Espesor de la pared (e) [mm] 6 Peso propio unitario (Ppt) [kg/m] 4,78 Sección (A) [mm2] 1772 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Momento de inercia (J) [cm4]	902
Limite de fluencia mínimo del material (Rpo2) [N/mm2] Coeficiente de dilatación lineal (s) [1/°K] Intensidad máxima [A] Densidad de corriente en cortocircuito del tubo [A/mm2] Tubo en embarrado secundario Aleación E-AIMgSio,5, F22 Diámetro exterior (D) [mm] Diámetro interior (d) [mm] Espesor de la pared (e) [mm] Sección (A) [mm2] Carga de rotura del material (a _R) [N/mm2] Momento de inercia (J) [cm4] Momento resistente (W) [cm3] Módulo de elasticidad (Young) (E) [N/mm2] Límite de fluencia mínimo del material (Rpo2) [N/mm2] Coeficiente de dilatación lineal (s) [1/K]	Momento resistente (W) [cm3]	120
Coeficiente de dilatación lineal (s) [1/°K] 0,000023 Intensidad máxima [A] 3250 Densidad de corriente en cortocircuito del tubo [A/mm2] 116 Tubo en embarrado secundario Aleación E-AlMgSiO,5, F22 Diámetro exterior (D) [mm] 100 Diámetro interior (d) [mm] 88 Espesor de la pared (e) [mm] 6 Peso propio unitario (Ppt) [kg/m] 4,78 Sección (A) [mm2] 1772 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Módulo de elasticidad (Young) (E) [N/mm2]	70000
Intensidad máxima [A] 3250 Densidad de corriente en cortocircuito del tubo [A/mm2] 116 Tubo en embarrado secundario Aleación E-AlMgSi0,5, F22 Diámetro exterior (D) [mm] 100 Diámetro interior (d) [mm] 88 Espesor de la pared (e) [mm] 6 Peso propio unitario (Ppt) [kg/m] 4,78 Sección (A) [mm2] 1772 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Límite de fluencia mínimo del material (Rpo2) [N/mm2]	160
Densidad de corriente en cortocircuito del tubo [A/mm2] Tubo en embarrado secundario Aleación E-AIMgSi0,5, F22 Diámetro exterior (D) [mm] 100 Diámetro interior (d) [mm] 88 Espesor de la pared (e) [mm] 6 Peso propio unitario (Ppt) [kg/m] Sección (A) [mm2] Carga de rotura del material (a _R) [N/mm2] Momento de inercia (J) [cm4] Momento resistente (W) [cm3] Módulo de elasticidad (Young) (E) [N/mm2] Límite de fluencia mínimo del material (Rpo2) [N/mm2] Coeficiente de dilatación lineal (s) [1/K] O,000023	Coeficiente de dilatación lineal (s) [1/°K]	0,000023
Tubo en embarrado secundario Aleación E-AIMgSi0,5, F22 Diámetro exterior (D) [mm] Diámetro interior (d) [mm] Espesor de la pared (e) [mm] Peso propio unitario (Ppt) [kg/m] Sección (A) [mm2] Carga de rotura del material (a _R) [N/mm2] Momento de inercia (J) [cm4] Momento resistente (W) [cm3] Módulo de elasticidad (Young) (E) [N/mm2] Límite de fluencia mínimo del material (Rpo2) [N/mm2] Coeficiente de dilatación lineal (s) [1/K] O,000023	Intensidad máxima [A]	3250
Aleación E-AlMgSi0,5, F22 Diámetro exterior (D) [mm] 100 Diámetro interior (d) [mm] 88 Espesor de la pared (e) [mm] 6 Peso propio unitario (Ppt) [kg/m] 4,78 Sección (A) [mm2] 1772 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Densidad de corriente en cortocircuito del tubo [A/mm2]	116
Diámetro exterior (D) [mm] 100 Diámetro interior (d) [mm] 88 Espesor de la pared (e) [mm] 6 Peso propio unitario (Ppt) [kg/m] 4,78 Sección (A) [mm2] 1772 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Tubo en embarrado secundario	
Diámetro interior (d) [mm] 88 Espesor de la pared (e) [mm] 6 Peso propio unitario (Ppt) [kg/m] 4,78 Sección (A) [mm2] 1772 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 70000 Límite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Aleación	•
Espesor de la pared (e) [mm] 6 Peso propio unitario (Ppt) [kg/m] 4,78 Sección (A) [mm2] 1772 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 70000 Límite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Diámetro exterior (D) [mm]	100
Peso propio unitario (Ppt) [kg/m] 4,78 Sección (A) [mm2] 1772 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 70000 Límite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Diámetro interior (d) [mm]	88
Sección (A) [mm2] 1772 Carga de rotura del material (a _R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 70000 Límite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Espesor de la pared (e) [mm]	6
Carga de rotura del material (a_R) [N/mm2] 195 Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 70000 Límite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Peso propio unitario (Ppt) [kg/m]	4,78
Momento de inercia (J) [cm4] 197 Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 70000 Límite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Sección (A) [mm2]	1772
Momento resistente (W) [cm3] 39 Módulo de elasticidad (Young) (E) [N/mm2] 70000 Límite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Carga de rotura del material (a _R) [N/mm2]	195
Módulo de elasticidad (Young) (E) [N/mm2] 70000 Límite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Momento de inercia (J) [cm4]	197
Límite de fluencia mínimo del material (Rpo2) [N/mm2] 160 Coeficiente de dilatación lineal (s) [1/K] 0,000023	Momento resistente (W) [cm3]	39
Coeficiente de dilatación lineal (s) [1/K] 0,000023	Módulo de elasticidad (Young) (E) [N/mm2]	70000
11.2	Límite de fluencia mínimo del material (Rpo2) [N/mm2]	160
Intensidad máxima [A] 2040	Coeficiente de dilatación lineal (s) [1/K]	0,000023
	Intensidad máxima [A]	2040

Densidad de corriente en cortocircuito del tubo [A/mm2]	116
---	-----

Características de los aisladores soporte

En los tramos del vano A y vano B correspondientes a las barras principales y secundarias respectivamente, se instalan aisladores de las siguientes características mecánicas:

Características de los aisladores s	soporte
Aisladores (Vano A, principal)	
Carga de rotura a flexión [N]	10000
Carga de rotura a torsión [N]	4000
Altura del aislador [mm]	2300
Altura de la pieza soporte [mm]	170
Aisladores (Vano B, secundario)	
Carga de rotura a flexión [N]	6000
Carga de rotura a torsión [N]	3000
Altura del aislador [mm]	2300
Altura de la pieza soporte [mm]	140

2.1.5 Cálculo mecánico del embarrado PRINCIPAL.

2.5.5.1 Cálculo Corriente de cortocircuito

Como ya se ha dicho, la intensidad simétrica de cortocircuito trifásico $(I_k^")$ a efectos de diseño es de 31,5 [kA] en el parque de 132 [kV].

La intensidad de cresta, (Según la norma "UNE-EN 60909-0-2012") tiene un valor de:

$$I_P = X \sqrt{2} I_k'' [kA]$$

Donde:

X: Factor de la intensidad pico definido por la siguiente expresión:

$$X = 1.02 + 0.98 e^{-3 (R/X)}$$

 $^R/_X$: Relación de impedancias equivalentes del sistema en el punto de cortocircuito que, para la red de transporte en este nivel de tensión, vale típicamente 0,07.

Por lo cual tendremos los siguientes resultados:

Intensidad de Cresta (kA)	80,826
Factor k	1,814

2.5.5.2 Tensión en el tubo

Esfuerzo por viento F_V :

$$F_V = P_{viento} \cdot d_{exterior} [N/m]$$

Esfuerzo por peso propio F_{pp} :

$$F_{pp} = P_{pt} \cdot g \ [N/m]$$

Donde la gravedad está definida como $g=9.81~m/_{S^2}~y~P_{pt}$ es el peso propio unitario de conductor rígido.

Esfuerzo por peso del cable amortiguador F_{pa} :

$$F_{pa} = \frac{4}{3} (Peso\ del\ cable\ amortiguador) \cdot g\ [N/m]$$

Donde el peso del cable amortiguador viene dado para los cuatro tercios de cable.

Esfuerzo por peso Total F_p :

$$F_p = F_{pp} + F_{pa} [N/m]$$

Esfuerzos por hielo F_h :

$$F_h = P_1 \cdot g \cdot \sqrt{d_{exterior}} [N/m]$$

Donde:

 P_1 : Parámetro que varía entre (0, 0,18 y 0,36) dependiendo de la altitud de la subestación. $d_{exterior}$: Diámetro exterior del tubo.

Esfuerzos por cortocircuito F_s :

La fuerza estática por unidad de longitud entre dos conductores paralelos recorridos por una intensidad se obtiene de la expresión dada por la norma "UNE-EN 60865-1-2013":

$$F_{s} = \frac{\sqrt{3}}{2} \frac{\mu_{0}}{a \cdot \pi} (I_{p})^{2} \left[\frac{N}{m} \right]$$

Donde:

 μ_0 : Permeabilidad magnética del vacío $\left(4\pi\cdot 10^{-7} \left[{}^{N}/_{A^2}\right]\right)$.

a: Distancia media entre fases.

Los esfuerzos dinámicos dependen a su vez de la frecuencia de vibración propia del tubo, que es función del tubo, el vano y los apoyos, y que permite calcular dos coeficientes que determinan el esfuerzo dinámico en cortocircuito sobre el tubo:

 V_{σ} = factor que tiene en cuenta el efecto dinámico.

 V_r = factor que tiene en cuenta el reenganche.

La frecuencia de vibración de un tubo está definida como:

$$f_c = \frac{\gamma}{l^2} \sqrt{\frac{E \cdot I}{m}} \quad [Hz]$$

Donde:

I: Inercia de la sección del tubo.

m: Masa unitaria del tubo, incluido cable amortiguador.

E: Módulo de Young del material.

l: Longitud del vano.

 γ : Coeficiente del tubo y los apoyos, 1,57 en este caso.

La relación entre la frecuencia de oscilación y la frecuencia nominal del sistema $\left(\frac{f_c}{50~Hz}\right)$ establece los valores de V_{σ} y V_{r} de la siguiente forma:

En estas condiciones se presentan las siguientes expresiones:

$$V_{\sigma} = 0.756 + 4.49 \cdot e^{-1.68 \cdot X} + 0.54 \cdot \log \left(\frac{f_c}{50 \, Hz} \right)$$
$$V_r = 1 - 0.615 \cdot \log \left(\frac{f_c}{50 \, Hz} \right)$$

La tensión de trabajo en el tubo por esfuerzo dinámico de cortocircuito está definida por:

$$\sigma_m = V_{\sigma} \cdot V_r \cdot \beta \cdot \left(\frac{F_s \cdot l^2}{8 \cdot W}\right) \ \left[\frac{N}{mm^2} \right]$$

Donde:

β: Coeficiente dependiente del tipo y número de soportes, ver Figura 1.

W: Módulo resistente de la sección del tubo.

La tensión de trabajo total en el tubo vendrá dada por la suma geométrica de las tensiones producidas por los distintos esfuerzos, que se acumulan, en sus direcciones respectivas, a la calculada de cortocircuito. En este caso, y considerando todas las cargas uniformemente repartidas:

$$\sigma_i = \frac{1}{8} \cdot \frac{P \cdot l^2}{W} \quad \left[\frac{N}{mm^2} \right]$$

Donde:

l: Longitud del vano.

W: Módulo resistente de la sección.

P: Carga repartida que produce el esfuerzo.

Por lo tanto, se tendrá:

Por viento:
$$\sigma_v = \frac{1}{8} \cdot \frac{F_v \cdot l^2}{W} \left[\frac{N}{mm^2} \right]$$

Por peso propio:
$$\sigma_p = \frac{1}{8} \cdot \frac{F_p \cdot l^2}{W} \left[N / mm^2 \right]$$

Por hielo:
$$\sigma_h = \frac{1}{8} \cdot \frac{F_h \cdot l^2}{W} \left[N / mm^2 \right]$$

La tensión máxima tendrá un valor de:

$$\sigma_{to} = \sqrt{(\sigma_v + \sigma_m)^2 + (\sigma_p + \sigma_h)^2} \left[\frac{N}{mm^2} \right]$$

El coeficiente de seguridad del tubo frente al límite de fluencia está expresado como:

Coeficiente de Seguridad =
$$\frac{R_{po2}}{\sigma_{to}}$$

Como resultado a las anteriores definiciones se tendrá el siguiente resultado:

Esfuerzos por viento (Fv) [N/m]			
Esfuerzos por peso propio (Fpp) [N/m]	94,568		
Esfuerzo por el peso del Cable amortiguador (Fpa) [N/m]	34,871		
Esfuerzo por peso total (Fp) [N/m]	129,440		
Esfuerzo por Hielo (Fh) [N/m]	0,000		
Esfuerzo por cortocircuito (Fs) [N/m]	377,175		
Frecuencia de vibración de un tubo (Fc) [Hz]	2,378		
Factor de efecto dinámico (Vσ)	0,255		
Factor de reenganche (V _Y)	1,814		
Tensión de trabajo en el tubo DINÁMICO (σm) [N/mm2]	30,670		

Tensión de trabajo de viento (σν) [N/mm2]				
Tensión mecánica causada por fuerzas de conductores principales (σm) + (σν) [N/mm2]				
Tensión de trabajo de peso propio (σp) [N/mm2]	22,787			
Tensión de trabajo por hielo (σh) [N/mm2]	0,000			
Tensión de trabajo de tensión máxima (σto) [N/mm2]				
Coeficiente de seguridad	2,752			

En cuanto al esfuerzo en cortocircuito, la norma "UNE-EN 60865-1-2013" establece que el tubo soporta los esfuerzos si se cumplen las siguientes condiciones:

1.
$$\sigma_{to} \leq q \cdot R_{po2}$$

Donde:

 R_{po2} : Límite de fluencia mínimo del material $\left[{}^{N}/_{mm^2} \right]$ q: Factor de resistencia del conductor, se calcula de la siguiente forma según la norma:

$$q = 1.7 \frac{1 - \left(1 - \frac{2t}{d_{exterior}}\right)^3}{1 - \left(1 - \frac{2t}{d_{exterior}}\right)^4}$$

$$t = d_{exterior} - d_{interior}$$

Con lo cual se tendrán los siguientes resultados:

Tensión de trabajo de tensión máxima (σto) [N/mm2]	58,14
Factor de resistencia del conductor (q)	1,414
Límite de fluencia mínimo del material (Rpo2) * Factor de resistencia del conductor (q)	226,218

Cumple la condición 1.

2.
$$\sigma_v + \sigma_m \leq R_{po2}$$

Se tienen los siguientes resultados:

Tensión mecánica causada por fuerzas de conductores principales (σm) + (σν) [N/mm2]	53,487
Límite de fluencia mínimo del material (Rpo2) [N/mm2]	160,000

Cumple la condición 2.

Como se puede observar, el tubo está lejos del límite para esfuerzos en cortocircuito.

2.5.5.3 Reacciones sobre aisladores soporte

El máximo esfuerzo se producirá en los aisladores intermedios, considerando dos veces el esfuerzo producido en el extremo de un vano, según la norma "UNE-EN 60865-1-2013".

Las acciones a considerar en este caso son solo horizontales. Así,

Viento sobre el tubo (F_v , Calculada anteriormente), Esfuerzo en cortocircuito: Según la norma de referencia, el valor de esfuerzo sobre los soportes tiene la expresión:

$$F_{da} = F_s \cdot V_{\sigma} \cdot V_r \ [^N/_m]$$

La suma de esfuerzos sobre el soporte central entre dos vanos se expresará de la siguiente forma:

$$F_t = 2 \cdot l \cdot \alpha \cdot (F_{da} + F_v) [N/m]$$

Donde α está definida por el tipo de viga y de soporte, como se presenta en la Figura 1.

Tipo de viga y de soporte			Factor α	Factor β*	Factor y		
Vigas de un solo vano	A y B: soportes simples	† A	<u>↑</u>	A: 0,5 B: 0,5	1,0	1,57	
	A: soporte empotrado B: soporte simple	†		A: 0,625 B: 0,375	$\frac{8}{11} = 0.73$	2,45	
	A y B: soportes empotrados	†	—————————————————————————————————————	A: 0,5 B: 0,5	$\frac{8}{16} = 0,5$	3,56	
Vigas continua con soportes simples equidistantes	Dos vanos	†	<u>↑</u>	A: 0,375 B: 1,25	$\frac{8}{11} = 0.73$	2,45	
	Tres o más vanos	1	↑ ↑ ↑ ↑ A	A: 0,4 B: 1,1	$\frac{8}{11} = 0.73$	3,56	
* Se incluyen los efectos de plasticidad.							

Figura 1. Factores α , β y γ para diferentes disposiciones de apoyos de embarrados.

Este esfuerzo se produce sobre el eje del tubo, que está situado 170 [mm] por encima de la cabeza del aislador, punto sobre el que el fabricante garantiza el esfuerzo. Por lo tanto se realiza el cálculo del esfuerzo en el punto de garantía (F'_t) :

$$F'_t = F_t \cdot \frac{2.300 \cdot (Altura\ del\ Aislador) + 170 \cdot (Cantidad\ de\ piezas)}{2.300 \cdot (Altura\ del\ Aislador)} [N]$$

El aislador debe cumplir con las condiciones que en las peores condiciones presenten un coeficiente de seguridad frente a la carga de rotura de 1,15, el cual se calcula por medio de la siguiente expresión:

Carga de rotura de flexión del Aislador

Se tienen los siguientes resultados:

o tieriori ios siguierites resultades.	
Esfuerzos por viento en soporte central (Fv) [N]	129,610
Esfuerzos por cortocircuito en soporte central (Fda) [N]	174,222
Factor α	0,500
Esfuerzos sobre el soporte central entre dos vanos (Ft) [N]	3949,813
Esfuerzo total en la punta del aislador (F't) [N]	4241,756
Carga de rotura flexión aislador	2,358

2.5.5.4 Flecha en el tubo

La flecha máxima para un vano se obtiene de la expresión:

$$f = \propto_f \cdot \frac{P \cdot l^2}{E \cdot J} \cdot 100 \quad [cm]$$

Donde:

P: Fuerza vertical por unidad de longitud (N/m)

l: Longitud del vano [*m*]

E: Módulo de elasticidad del material [N/mm2]

J: Momento de inercia de la sección $[cm^4]$

 \propto_f : Factor que depende del tipo de apoyo y que toma el valor 1,3.

La carga a considerar en este caso es el peso propio del tubo, más el cable amortiguador y el manguito de hielo. Sustituyendo:

Fecha en el tubo [cm]	8,933371317
-----------------------	-------------

2.5.5.5 Elongación del embarrado

El tubo que forma el embarrado, por efectos térmicos se dilatará, de acuerdo con la expresión:

$$\Delta l = l_0 \cdot \alpha \cdot \Delta \theta$$

Donde:

 l_0 : Longitud inicial del tubo [m].

 α : Coeficiente de dilatación lineal del tubo, donde $\alpha = 23 \cdot 10^{-6} \left[\frac{1}{K} \right]$.

 $\Delta\theta$: Incremento de temperatura entre la de montaje (35°C) y la de servicio (80°C).

Tendiendo como resultado:

Dada la elongación del vano se instalarán piezas especiales que permitan absorber esta dilatación.

2.5.5.6 Esfuerzo térmico en cortocircuito

La intensidad térmica en cortocircuito (I_{th}) viene dada según la norma "UNE-EN 60865-1-2013" mediante la siguiente expresión:

$$I_{th} = I_k^{"} \sqrt{m+n}$$

Donde:

m: Coeficiente térmico de disipación, está determinado por la siguiente expresión:

$$m = \frac{1}{2 \cdot f \cdot T_k \cdot \ln(k-1)} \left[e^{(4 \cdot f \cdot T_k \cdot \ln(k-1))} - 1 \right]$$

n: Coeficiente térmico de disipación, que para las configuraciones que REE utiliza será 1.

Este valor debe ser menor que la capacidad térmica del tubo, con densidad de corriente en cortocircuito $\rho_c = 116 \left[\frac{A}{mm^2} \right]$ de (proceso adiabático).

Para el tubo actual, la capacidad térmica se define por medio de la expresión $(S \cdot \rho_c)$, por lo cual se tendrán los siguientes resultados:

Coeficiente (m)	1,95E- 04
Coeficiente (n)	1,000
Capacidad térmica del tubo [kA]	414,004
Intensidad térmica en corte circuito (Ith) [kA]	31,503

Se puede apreciar que la capacidad térmica del tubo es muy superior a la corriente térmica de cortocircuito de la instalación.

2.5.5.7 Intensidad nominal de las barras

La intensidad nominal teórica del tubo elegido (I_{tubo}), está dada según el fabricante con 30 °C de temperatura ambiente y 65 °C de temperatura de trabajo del tubo.

Según "DIN 43670", esta intensidad debe ser corregida con distintos factores en función de la composición del tubo, la altitud y la temperatura máxima de trabajo (Según RAT 5).

Así, deben tenerse en cuenta los siguientes factores:

 $K_1 = 0.96$ - Por la aleación elegida.

 $K_2 = 1.34$, Para temperatura final de 80 °C.

 $K_3 = 0.75$, Por ser tubería.

 $K_4 = 1$, El factor K_4 solo se aplica si no hay bifurcación en una longitud de al menos 2 [m].

 $K_5 = 0.98$, Para instalación a menos de 1.000 [m. s. n. m].

Según la citada norma la intensidad máxima será:

$$I_{max} = I_{tubo} \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5$$

Y tendremos los siguientes resultados:

	J
Imax [A]	3072,888
Potencia [MVA]	702,557

Por lo que tenemos una Capacidad superior a la necesaria.

2.1.6 Cálculo mecánico del embarrado SECUNDARIO

2.5.6.1 Corriente de cortocircuito

Como ya se ha dicho, la intensidad simétrica de cortocircuito trifásico (I_k) a efectos de diseño es de 31,5 [kA] en el parque de 132 [kV].

La intensidad de cresta, (Según la UNE-EN 60909-0-2012) vale:

$$I_P = X \sqrt{2} I_k^{"} [kA]$$

Donde:

X: Factor de la intensidad pico definido por la siguiente expresión:

$$X = 1.02 + 0.98 e^{-3 {R/X}}$$

 $^R/_X$: Relación de impedancias equivalentes del sistema en el punto de cortocircuito que, para la red de transporte en este nivel de tensión, vale típicamente 0,07.

Por lo cual tendremos los siguientes resultados:

Intensidad de Cresta (kA)	80,826
Factor k	1,814

2.5.6.2 Tensión en el tubo

Esfuerzo por viento F_V :

$$F_V = P_{viento} \cdot d_{exterior} [N/m]$$

Esfuerzo por peso propio F_{pp} :

$$F_{pp} = P_{pt} \cdot g \, [N/m]$$

Donde la gravedad está definida como $g=9.81~^m/_{S^2}$ y P_{pt} es el peso propio unitario de conductor rígido.

Esfuerzo por peso del cable amortiguador F_{pa} :

$$F_{pa} = \frac{4}{3} (Peso\ del\ cable\ amortiguador) \cdot g\ [N/m]$$

Donde el peso del cable amortiguador viene dado para los cuatro tercios de cable.

Esfuerzo por peso Total F_p :

$$F_p = F_{pp} + F_{pa} \left[\frac{N}{m} \right]$$

Esfuerzos por hielo F_h :

$$F_h = P_1 \cdot g \cdot \sqrt{d_{exterior}} [N/m]$$

Donde:

 P_1 : Parámetro que varía entre (0, 0,18 y 0,36) dependiendo de la altitud de la subestación.

 $d_{exterior}$: Diámetro exterior del tubo.

Esfuerzos por cortocircuito F_s :

La fuerza estática por unidad de longitud entre dos conductores paralelos recorridos por una intensidad se obtiene de la expresión dada por la norma "UNE-EN 60865-1-2013":

$$F_s = \frac{\sqrt{3}}{2} \frac{\mu_0}{a \cdot \pi} (I_p)^2 \quad [N/m]$$

Donde:

 μ_0 : Permeabilidad magnética del vacío $\left(4\pi\cdot 10^{-7} \left[N/A^2\right]\right)$.

a: Distancia media entre fases.

Los esfuerzos dinámicos dependen a su vez de la frecuencia de vibración propia del tubo, que es función del tubo, el vano y los apoyos, y que permite calcular dos coeficientes que determinan el esfuerzo dinámico en cortocircuito sobre el tubo:

 V_{σ} = factor que tiene en cuenta el efecto dinámico.

 V_r = factor que tiene en cuenta el reenganche.

La frecuencia de vibración de un tubo está definida como:

$$f_c = \frac{\gamma}{l^2} \sqrt{\frac{E \cdot I}{m}} \ [Hz]$$

Donde:

I: Inercia de la sección del tubo.

m: Masa unitaria del tubo, incluido cable amortiguador.

E: Módulo de Young del material.

l: Longitud del vano.

 γ : Coeficiente del tubo y los apoyos, 1,57 en este caso.

Sustituyendo y operando:

$$f_c = 5.442 [Hz]$$

La relación entre la frecuencia de oscilación y la frecuencia nominal del sistema $\left(\frac{f_c}{50~Hz}\right)$, establece los valores de V_σ y V_r .

En estas condiciones se presentan las siguientes expresiones:

$$V_{\sigma} = 0.756 + 4.49 \cdot e^{-1.68 \cdot X} + 0.54 \cdot \log \left(\frac{f_c}{50 \, Hz} \right)$$
$$V_r = 1 - 0.615 \cdot \log \left(\frac{f_c}{50 \, Hz} \right)$$

La tensión de trabajo en el tubo por esfuerzo dinámico de cortocircuito está definida por:

$$\sigma_m = V_{\sigma} \cdot V_r \cdot \beta \cdot \left(\frac{F_s \cdot l^2}{8 \cdot W}\right) \left[\frac{N}{mm^2}\right]$$

Donde:

β: Coeficiente dependiente del tipo y número de soportes, ver Figura1.

W: Módulo resistente de la sección del tubo.

La tensión de trabajo total en el tubo vendrá dada por la suma geométrica de las tensiones producidas por los distintos esfuerzos, que se acumulan, en sus direcciones respectivas, a la calculada de cortocircuito. En este caso, y considerando todas las cargas uniformemente repartidas:

$$\sigma_i = \frac{1}{8} \cdot \frac{P \cdot l^2}{W} \left[\frac{N}{mm^2} \right]$$

Donde:

l: Longitud del vano.

W: Módulo resistente de la sección.

P: Carga repartida que produce el esfuerzo.

Por lo tanto, se tendrá:

Por viento:
$$\sigma_v = \frac{1}{8} \cdot \frac{F_v \cdot l^2}{W} \left[N / mm^2 \right]$$

Por peso propio:
$$\sigma_p = \frac{1}{8} \cdot \frac{F_p \cdot l^2}{W} \left[\frac{N}{mm^2} \right]$$

Por hielo:
$$\sigma_h = \frac{1}{8} \cdot \frac{F_h \cdot l^2}{W} \left[N / mm^2 \right]$$

La tensión máxima tendrá un valor de:

$$\sigma_{to} = \sqrt{(\sigma_v + \sigma_m)^2 + (\sigma_p + \sigma_h)^2} \left[\frac{N}{mm^2} \right]$$

El coeficiente de seguridad del tubo frente al límite de fluencia está expresado como:

Coeficiente de Seguridad =
$$\frac{R_{po2}}{\sigma_{to}}$$

Como resultado a las anteriores definiciones se tendrá el siguiente resultado:

Esfuerzos por viento (Fv) [N/m]	86,407
Esfuerzos por peso propio (Fpp) [N/m]	46,892
Esfuerzo por el peso del Cable amortiguador [N/m]	17,436
Esfuerzo por peso total (Fp) [N/m]	64,327
Esfuerzo por Hielo (Fh) [N/m]	0,000

Fuerza por cortocircuito (Fs) [N/m]	377,175
Frecuencia de vibración de un tubo (Fc) [Hz]	6,312
Factor de efecto dinámico (Vσ)	0,484
Factor de reenganche (V _Y)	1,553
Tensión de trabajo en el tubo DINÁMICO (σm) [N/mm2]	38,360
Tensión de trabajo de viento (σν) [N/mm2]	11,701
Tensión mecánica causada por fuerzas de conductores principales (σm) + (σv) [N/mm2]	50,060
Tensión de trabajo de peso propio (σp) [N/mm2]	8,711
Tensión de trabajo por hielo (σh) [N/mm2]	0,000
Tensión de trabajo de tensión máxima (σto) [N/mm2]	50,813
Coeficiente de seguridad	3,149

En cuanto al esfuerzo en cortocircuito, la norma "UNE-EN 60865-1-2013" establece que el tubo soporta de los esfuerzos si se cumplen las siguientes condiciones:

1.
$$\sigma_{to} \leq q \cdot R_{po2}$$

Donde:

q: Factor de resistencia del conductor, se calcula de la siguiente forma según la norma:

$$q = 1.7 \frac{1 - \left(1 - \frac{2t}{d_{exterior}}\right)^3}{1 - \left(1 - \frac{2t}{d_{exterior}}\right)^4}$$

$$t = d_{exterior} - d_{interior}$$

Con lo cual se tendrán los siguientes resultados:

Tensión de trabajo de tensión máxima (σto) [N/mm2]	50,813
Factor de resistencia del conductor (q)	1,431
Límite de fluencia mínimo del material (Rpo2) * Factor de resistencia del conductor (q)	228,997

Cumple la condición 1.

2.
$$\sigma_v + \sigma_m \leq R_{po2}$$

Se tienen los siguientes resultados:

Tensión mecánica causada por fuerzas de conductores principales (σm) + (σν) [N/mm2]	50,060
Límite de fluencia mínimo del material (Rpo2) [N/mm2]	160,000

Cumple la condición 2.

Como se puede observar, el tubo está lejos del límite para esfuerzos en cortocircuito.

2.5.6.3 Reacciones sobre aisladores soporte

El máximo esfuerzo se producirá en los aisladores intermedios, considerando dos veces el esfuerzo producido en el extremo de un vano, según la norma "UNE-EN 60865-1-2013".

Las acciones a considerar en este caso son solo horizontales. Así,

Viento sobre el tubo (F_v , Calculada anteriormente), Esfuerzo en cortocircuito que según la norma de referencia, el valor de esfuerzo sobre los soportes tiene la expresión:

$$F_{da} = F_s \cdot V_\sigma \cdot V_r \ [N/m]$$

La suma de esfuerzos sobre el soporte central entre dos vanos se expresará de la siguiente forma:

$$F_t = 2 \cdot l \cdot \alpha \cdot (F_{da} + F_v) \quad [N/m]$$

Donde α está definida por el tipo de viga y de soporte, como se presenta en la Figura 1.

Este esfuerzo se produce sobre el eje del tubo, que está situado 170 [mm] por encima de la cabeza del aislador, punto sobre el que el fabricante garantiza el esfuerzo. Por lo tanto, se realiza el cálculo del esfuerzo en el punto de garantía (F'_t) :

$$F'_t = F_t \cdot \frac{2.300 \cdot (Altura\ del\ Aislador) + 170 \cdot (Cantidad\ de\ piezas)}{2.300 \cdot (Altura\ del\ Aislador)}$$
 [N]

El aislador debe cumplir con las condiciones que en las peores condiciones presenten un coeficiente de seguridad frente a la carga de rotura de 1,15, el cual se calcula por medio de la siguiente expresión:

$$\frac{\textit{Carga de rotura de flexión del Aislador}}{\textit{F'}_t}$$

Se tienen los siguientes resultados:

Esfuerzos por viento en soporte central (Fv) [N]	86,407
Esfuerzos por cortocircuito en soporte central (Fda) [N]	283,270
Factor α	0,500
Esfuerzos sobre el soporte central entre dos vanos (Ft) [N]	2402,900

Esfuerzo total en la punta del aislador (F't) [N]	2580,506
Carga de rotura flexión aislador	2,325

2.5.6.4 Flecha en el tubo

La flecha máxima para un vano se obtiene de la expresión:

$$f = \alpha_f \cdot \frac{P \cdot l^2}{E \cdot J} \cdot 100 \quad [cm]$$

Donde:

P: Fuerza vertical por unidad de longitud (N/m)

l: Longitud del vano [*m*]

E: Módulo de elasticidad del material [N/mm2]

J: Momento de inercia de la sección $[cm^4]$

 \propto_f : Factor que depende del tipo de apoyo y que toma el valor 1,3.

La carga a considerar en este caso es el peso propio del tubo, más el cable amortiguador y el manguito de la hielo. Sustituyendo:

Fecha en el tubo [cm] 3,11046159

2.5.6.5 Elongación del embarrado

El tubo que forma el embarrado, por efectos térmicos se dilatará, de acuerdo con la expresión:

$$\Delta l = l_0 \cdot \alpha \cdot \Delta \theta$$

Donde:

 l_0 : Longitud inicial del tubo [m].

 α : Coeficiente de dilatación lineal del tubo, donde $\alpha = 23 \cdot 10^{-6} \, [{}^1/_K]$.

 $\Delta\theta$: Incremento de temperatura entre la de montaje (35°C) y la de servicio (80°C).

Elongación del Embarrado (ΔL) [mm]	47,563
. 3	' ' '

Dada la elongación del vano se instalarán piezas especiales que permitan absorber esta dilatación.

2.5.6.6 Esfuerzo térmico en cortocircuito

La intensidad térmica en cortocircuito (I_{th}) viene dada según la norma "UNE-EN 60865-1-2013" mediante la siguiente expresión:

$$I_{th} = I_k^{"} \sqrt{m+n}$$

Donde:

m: Coeficiente térmico de disipación, está determinado por la siguiente expresión:

$$m = \frac{1}{2 \cdot f \cdot T_k \cdot \ln(k-1)} \left[e^{(4 \cdot f \cdot T_k \cdot \ln(k-1))} - 1 \right]$$

n: Coeficiente térmico de disipación, que para las configuraciones que REE utiliza será 1.

Este valor debe ser menor que la capacidad térmica del tubo, con densidad de corriente en cortocircuito $\rho_c = 116 \left[\frac{A}{mm^2} \right]$ de (proceso adiabático).

Para el tubo actual, la capacidad térmica se define por medio de la expresión $(S \cdot \rho_c)$, por lo cual se tendrán los siguientes resultados:

Coeficiente (m)	1,95E- 04
Coeficiente (n)	1,000
Capacidad térmica del tubo [kA]	205,552
Intensidad térmica en corte circuito (Ith) [kA]	31,503

Se puede apreciar que la capacidad térmica del tubo es muy superior a la corriente térmica de cortocircuito de la instalación.

2.5.6.7 Intensidad nominal de las barras

La intensidad nominal teórica del tubo elegido (I_{tubo}) , está dada según el fabricante con 30 °C de temperatura ambiente y 65 °C de temperatura de trabajo del tubo.

Según DIN 43670, esta intensidad debe ser corregida con distintos factores en función de la composición del tubo, la altitud, la temperatura máxima de trabajo (Según RAT 5).

Así, deben tenerse en cuenta los siguientes factores:

 $K_1 = 0.96$ - Por la aleación elegida.

 $K_2 = 1.34$, Para temperatura final de 80 °C.

 $K_3 = 0.75$, Por ser tubería.

 $K_4 = 1$, El factor K_4 solo se aplica si no hay bifurcación en una longitud de al menos 2 [m].

 $K_5 = 0.98$, Para instalación a menos de 1.000 [m.s.n.m].

Según la citada norma la intensidad máxima será:

$$I_{max} = I_{tubo} \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5$$

Y tendremos los siguientes resultados:

Imax [A]	1928,828
Potencia [MVA]	440,989

Tenemos una Capacidad superior a la necesaria.

2.2 CÁLCULOS DE EFECTO CORONA.

2.2.1 Cálculo de la tensión disruptiva.

Para el cálculo de la tensión crítica disruptiva (U_c) a partir de la cual el efecto corona puede manifestarse y aplicada a conductores cilíndricos, puede aplicarse la fórmula de Peek:

$$U_c = \rho \cdot m_0 \cdot \frac{E_o}{\sqrt{2}} \cdot R \cdot ln\left(\frac{GMD}{R}\right)$$

Donde:

 m_0 : Coeficiente de irregularidad del conductor que toma el valor de 1 para tubo cilíndrico y liso.

R: Radio exterior del tubo en [cm]; para tubo de 150 [mm] toma un valor de 7,5 y para tubo de 100 toma un valor de 5 [cm].

GMD: Distancia media geométrica entre conductores en [cm]. Dado que se encuentran situados en un mismo plano y partiendo de que estén equidistantes entre si X [cm]:

$$GMD = \sqrt[3]{X \cdot X \cdot 2 \cdot X} = \sqrt[3]{2} \cdot X$$
$$GMD = 1.26 \cdot X \ [cm]$$

 δ : Densidad del aire. Según la norma "EN 50341-1-2012" La densidad del aire se representa a través de la siguiente expresión:

$$\rho = \rho_0 \frac{288}{T_c} e^{(-1.2 \cdot 10^{-4} \cdot H)}$$

Donde H es la altura, T_c es el incremento de la temperatura desde el montaje hasta la puesta en servicio, ρ_0 es la densidad del aire estándar con valor 1,225 $[^{kg}/_{m^3}]$.

 E_0 : Valor eficaz de campo eléctrico crítico para la aparición del efecto corona. Para conductores paralelos el valor máximo de campo viene dado por:

$$E_0 = \frac{\rho}{\rho_0} \cdot E_1 \cdot \left(1 + \frac{C_1}{\sqrt{\frac{\rho}{\rho_0} + R}} \right)$$

Donde:

 E_1 : Campo eléctrico disruptivo del aire $(E_1 = 30 [kV/cm])$

 C_1 : Constante dimensional empírica $(C_1 = 0.301 [\sqrt{cm}])$

Atendiendo a las anteriores definiciones se tienen los siguientes resultados:

Efecto Corona VANO A	
Factor de corrección de la densidad del aire	0,933
Coeficiente de rugosidad del conductor (mo)	1,000
RMG (r) [cm]	7,500
DMG [cm]	377,976
Campo Eléctrico crítico (Eo) [kV/cm]	31,169
Tensión crítica disruptiva (Uc) [kV]	604,410
Efecto Corona VANO B	
Factor de corrección de la densidad del aire	0,933
Coeficiente de rugosidad del conductor (mo)	1,000
RMG (r) [cm]	5,000
DMG [cm]	377,976
Campo Eléctrico crítico (Eo) [kV/cm]	31,884
Tensión crítica disruptiva (Uc) [kV]	454,828
-	

Esta tensión disruptiva está calculada para buen tiempo. Para el caso de tiempos de niebla, nieve o tempestad se debe considerar disminuida en un 20%, es decir, en este caso:

Tensión crítica disruptiva Embarrado A (Uc) [kV]	483,528
Tensión crítica disruptiva Embarrado B (Uc) [kV]	363,863

Por el hecho de estar en el mismo plano los conductores, la tensión disruptiva referida al conductor central debe ser disminuida en un 4% y aumentada en un 6% para los conductores laterales respectivamente.

Como se ve los valores obtenidos están muy alejados de la tensión eficaz entre fase y tierra de los conductores (83,7 [kV] para 145 [kV]) por lo que no es de esperar que el efecto corona se produzca.

2.3 DETERMINACIÓN DE DISTANCIAS MÍNIMAS DE EMBARRADOS TENDIDOS

2.3.1 Hipótesis de diseño

Desde el punto de vista de las aproximaciones entre fases que puedan producirse cuando se desplacen de forma simultánea dos conductores contiguos en condiciones de flecha máxima y con viento de $140^{Km}/h^{1}$ las distancias mínimas se han establecido de la forma que se indica para un vano de las siguientes características:

Longitud de vano (L) [m]	11
Flecha máxima (al 3%) [m]	0,33
Tipo de conductor	Simplex LAPWING
Cantidad de subconductores (n)	1
Diámetro del conductor (ø)/(d) [mm]	38,16
Sección del conductor (As) [mm2]	861,3
Peso propio del conductor (ms) [kg/m]	2,7
Módulo de elasticidad (E) [N/mm2]	70000
Distancia entre fases (a) [m]	3
Longitud media de cadenas [m]	2
Separación entre conductores de la misma fase (as) (mm)	0
Rigidez de los soportes (S) [N/m]	75000
Tiempo de despeje de defecto (Tk1) [seg]	1
Intensidad de cortocircuito (Ik3) [kA]	32
Relación R/X del sistema	0
Tensión máxima a 50°C [kg]	1050
Fuerza de tensión máxima en el cable a 50°C (Fst) [N]	10300,50
Radio medio geométrico (GMR) [mm]	19,080
Distancia media geométrica (GMD) (Ls) [m]	3,78

Se comprobará, además, el desplazamiento máximo en cortocircuito y la pérdida de distancia que esto produce, de acuerdo con lo estipulado en la norma "UNE-EN 60865-1-2013".

2.3.2 Normativa aplicable

Los cálculos que se realizan a continuación cumplen con la normativa vigente en España referente a este tipo de instalaciones y está basado en las siguientes normas y reglamentos:

- Reglamento sobre condiciones técnicas y garantías de seguridad en centrales eléctricas, subestaciones y centros de transformación. R. D. 337/2014 de 9 de mayo y sus Instrucciones Técnicas Complementarias.
- Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión y sus instrucciones técnicas complementarias. - Real Decreto 223/2008 de 15 de febrero de 2008.
- Norma CEI 865 de 1993, Cálculo de los efectos de las corrientes de cortocircuito.
- Norma UNE EN 60865-1, Corrientes de cortocircuito, cálculo de efectos. Parte 1: Definiciones y métodos de cálculo.
- Norma CEI 909-2001, Cálculo de corrientes de cortocircuito en redes de corriente alterna trifásica.
- Norma VDE 0102.
- Norma DIN 43670.

Si al aplicar las normas y reglamentos anteriores se obtuviesen valores que discrepasen con los que pudieran obtenerse con otras normas o métodos de cálculo, se considerará siempre el resultado más desfavorable, con objeto de estar siempre del lado de la seguridad.

2.3.3 Desplazamiento del vano con viento

La presión sobre el conductor debida al efecto del viento, según RLAT para conductores de diámetro mayor a 16 [mm] está dado por la siguiente ecuación:

$$P = 50 \left(\frac{V_v}{120}\right)^2$$

Donde V_v es la velocidad máxima de viento, y nuestro diseño esta supuesto con una velocidad de viento máxima de 140 ${km/h}$.

Para este caso, tendremos en cuenta la fuerza del viento (F_v) que se ejerce de forma directa sobre el diámetro de cada conductor, y tendremos:

$$F_{v} = P \cdot D_{conductor}$$

Donde $D_{conductor}$ es el diámetro del conductor.

Ahora se procederá a realizar el cálculo de la distancia mínima entre conductores, el cual se realizará por medio del desplazamiento máximo del conductor (d_{max}) y del ángulo de oscilación (θ) , estos están dados por:

$$\theta = \operatorname{atan}\left(\frac{F_v}{Peso\ del\ conductor}\right)$$

$$d_{max} = f_{max} \operatorname{sen}(\theta)$$

En estas condiciones, dada la escasa probabilidad de simultaneidad de viento y sobretensión, la distancia entre los conductores de fase del mismo circuito o circuitos distintos debe ser tal que no haya riesgo alguno de cortocircuito entre fases, teniendo presente los efectos de oscilaciones de los conductores debidas al viento y al desprendimiento de la nieve acumulada entre ellos.

Con este objeto, la separación mínima entre conductores de fase se determinará según la norma "ITC - LAT_07_OCT13" por la formula siguiente:

$$D_{min} = K\sqrt{F + L} + K'D_{PP}$$

Donde:

K: Coeficiente que depende de la oscilación de los conductores con el viento.

K': Coeficiente que depende de la tensión nominal de la línea y ángulo de oscilación.

F: Flecha máxima.

L: Longitud de la cadena de suspensión (si se posee).

 D_{PP} : Distancia mínima aérea especificada para prevenir una descarga disruptiva entre conductores durante sobretensiones de frente lento o rápido.

Por medio de las anteriores definiciones se tendrá:

Presión del viento sobre el conductor (Pv) [kg/m2]	68,056
Fuerzas del viento sobre los conductores (Fv) [kg/m]	2,597
Ángulo de oscilación de desplazamiento (θ) [Grados]	44,249
Coeficiente K	0,650
Coeficiente Dpp	1,400
Desplazamiento del conductor (dmax) [m]	0,230
Distancia mínima entre conductores (Dmin) [m]	1,563

Distancia inferior a la adoptada que es de 4 [m] para los conductores tendidos, superior incluso a la distancia teniendo en cuenta sobretensiones simultáneas con viento.

2.3.4 Efecto en conductores por corriente de cortocircuito

Dimensiones y parámetros característicos.

El esfuerzo debido a un defecto bifásico viene dado por la siguiente expresión:

$$F' = \frac{\mu_0}{2\pi} \cdot 0.75 \cdot \frac{I_{k3}^2}{a} \cdot \frac{l_c}{l}$$

Donde:

 I_{k3} : Corriente simétrica de cortocircuito trifásico.

 l_c : Longitud del vano sin cadenas.

l: Longitud total del vano.

a: Separación entre fases.

 μ_0 : Permeabilidad magnética del vacío $\left(4 \pi * 10^{-7} \left\lceil N \right/_{A^2} \right]\right)$.

La proporción entre el peso propio y la fuerza de cortocircuito tendrá un valor de:

$$r = \frac{F'}{n \, m_s \, g}$$

Donde:

n: Número de conductores por fase.

 m_s : Peso de uno de los conductores.

g: Aceleración de la gravedad (9,81 $[m/s^2]$)

La dirección resultante de la fuerza sobre el conductor será:

$$\delta_1 = arctg(r)$$

La flecha estática en el conductor tendido tendrá un valor de:

$$b_c = \frac{n \, m_s \, g * l^2}{8 F_{st}}$$

Donde F_{st} es la fuerza de tracción estática del conductor para el caso más desfavorable, que será la flecha máxima para 50°C.

Para esta flecha, el periodo de oscilación tendrá el siguiente valor:

$$T = 2\pi \sqrt{0.8 \frac{b_c}{g}}$$

El período resultante en caso de cortocircuito valdrá:

$$T_{res} = \frac{T}{\sqrt[4]{1 + r^2} \left[1 - \frac{\pi^2}{64} \left(\frac{\delta_1}{90} \right)^2 \right]}$$

El módulo de Young real del conductor vale, en función de la carga límite del cable (σ_{fin}) :

$$E = \begin{cases} E \left[0.3 + 0.7sen \left(\frac{F_{st}}{n A_s \sigma_{fin}} 90^o \right) \right] & si \quad \frac{F_{st}}{n A_s} \le \sigma_{fin} \\ E & si \quad \frac{F_{st}}{n A_s} > \sigma_{fin} \end{cases}$$

Donde:

 σ_{fin} : tiene un valor de $5 \cdot 10^7 \left[{}^{N}/{}_{m^2} \right]$ (menor valor de la tensión de mecánica del conductor cuanto E llega a ser constante)

A_s: Sección de un conductor.

n: Número de conductores por haz.

El factor de tensión mecánica del conductor se define como:

$$\zeta = \frac{(n \cdot m_s \cdot g \cdot l)^2}{24 \cdot F_{st}^3 \cdot N}$$

Donde *N* es la Norma de rigidez del sistema mecánico compuesto, que se define por la siguiente expresión:

$$N = \frac{1}{S \cdot l} + \frac{1}{n \cdot E \cdot A_s}$$

El ángulo de oscilación del vano durante el paso, o al fin del mismo, de la corriente de cortocircuito viene dado por la expresión:

$$\delta_{end} = \begin{cases} \delta_1 \left[1 - \cos \left(360 \frac{T_{k1}}{T_{res}} \right) \right] & para \quad 0 \le \frac{T_{k1}}{T_{res}} \le 0.5 \\ 2 \delta_1 & para \quad \frac{T_{k1}}{T_{res}} > 0.5 \end{cases}$$

El ángulo máximo de oscilación que se puede producir corresponde a una duración de cortocircuito inferior o igual a la duración del cortocircuito establecida T_{k1} , y se calcula como:

$$\delta_{max} = \begin{cases} 1,25 \ arcos \ \chi & si & 0,766 \le \chi \le 1 \\ 10^{\circ} + arcos \ \chi & si & -0,985 \le \chi \le 0,766 \\ 180^{\circ} & si & \chi \le -0,985 \end{cases}$$

Con

$$\chi = \begin{cases} 1 - r \operatorname{sen} \delta_{end} & \operatorname{si} \quad 0 \le \delta_k \le 90^{\circ} \\ 1 - r & \operatorname{si} \quad \delta_k > 90^{\circ} \end{cases}$$

Por lo tanto, se tendrán los siguientes datos:

Carga electromagnética sobre conductores principales (F') [N/m]	36,082
Relación entre la fuerza electromagnética y la de gravedad sobre el conductor (r)	1,380
Dirección de la fuerza resultante sobre el conductor ([1) [grados]	54,064
Flecha estática equivalente del conductor (bc) [m]	0,038
Periodo de oscilación del conductor (T) [segundos]	0,352
Periodo de oscilación del conductor en cortocircuito (Tres) [segundos]	0,269
σ fin [N/m2]	5,00E+07
Módulo de Young real (Eeff) [10^10 N/m2]	3,90
Norma de rigidez (N) [1/N]	1,24E-06
Factor de tensión mecánica del conductor principal (ξ)	0,003

Ángulo en relación a su posición régimen permanente ([end) [grados]	108,128
Coeficiente (X)	-0,380
Ángulo de oscilación calculado ([max) [grados]	122,310

• Fuerza de tensión por oscilación durante el cortocircuito

De acuerdo con la norma de referencia, la fuerza de tensión en cortocircuito, para conductores compuestos (haces), se calcula por:

$$F_{t,d} = F_{st}(1 + \psi \cdot \varphi)$$

Donde:

 F_{st} : Es la fuerza estática en el conductor.

 φ : Es el parámetro de carga, que tiene en cuenta el esfuerzo combinado de peso y cortocircuito en función del tiempo de despeje frente al período de oscilación del conductor, y valdrá:

$$\varphi = \begin{cases} 3\left(\sqrt{1+r^2}-1\right) & si \quad T_{k1} \ge T_{res}/4\\ 3(r sen\delta_{end} + \cos\delta_{end} - 1) & si \quad T_{k1} < T_{res}/4 \end{cases}$$

 ψ : Es un parámetro que combina los dos factores de carga ζ y ϕ , y que se calcula como una solución real de la ecuación:

$$\varphi^2 \psi^3 + \varphi(2+\zeta)\psi^2 + (1+2\zeta)\psi - (2+\varphi)\zeta = 0$$

2.3.5 Aproximación de conductores

El valor del desplazamiento máximo por oscilación en cortocircuito:

$$b_h = \begin{cases} C_f \cdot C_d \cdot b_c sen\delta_1 & si & \delta_{max} \geq \delta_1 \\ C_f \cdot C_d \cdot b_c sen\delta_{max} & si & \delta_{max} < \delta_1 \end{cases}$$

En donde C_f es un factor experimental que cubre las variaciones de la curva de equilibrio del cable durante el defecto, y su valor es:

$$C_f \begin{cases} 1,05 & si & r \leq 0,8 \\ 0,97 + 0,1r & si & 0,8 \leq r \leq 1,8 \\ 1,15 & si & r \geq 1,8 \end{cases}$$

El factor C_d considera los aumentos de la flecha debidos a la elongación elástica y térmica y puede obtenerse por la expresión:

$$C_d = \sqrt{1 + \frac{3}{8} \left(\frac{1}{b_c}\right)^2 \left(\varepsilon_{ela} + \varepsilon_{th}\right)}$$

La deformación elástica viene dada por:

$$\varepsilon_{ela} = (F_{t,d} - F_{st}) \cdot N$$

Y la deformación térmica:

$$\varepsilon_{th} = \begin{cases} C_{th} \left(\frac{\ddot{I}_{k3}}{nA_s}\right)^2 \frac{T_{res}}{4} & si \quad T_{k1} \ge T_{res}/4 \\ C_{th} \left(\frac{\ddot{I}_{k3}}{nA_s}\right)^2 \frac{T_{k1}}{4} & si \quad T_{k1} < T_{res}/4 \end{cases}$$

Y así, tendremos los siguientes resultados:

Parámetro de carga (Φ)	2,112
Fuerza de tracción (Ft,d) [N]	10517,404
Valor de Ψ	0,010
Coeficiente de Expansión elástica (Eela)	2,69E-04
Coeficiente térmico del cable (Cth) [m4/A2s]	2,70E-19
Coeficiente de Expansión térmica (Eth)	2,43E-05
Incremento de la flecha causado por alargamiento elástico y térmico (Cd)	1,037
Incremento de la flecha dinámica del conductor por el cambio de forma de curva (Cf)	1,108
Flecha dinámica resultante (Fed) [m]	0,044
Fuerza de tracción por caída después del cortocircuito (Fs,t)[N]	12445,668
Desplazamiento horizontal del vano (bh) [m]	0,036

2.3.6 Distancia entre fases en cortocircuito

Distancia entre conductores de diferente fase en cortocircuito:

$$D = a - 2b_h$$

Distancia entre fases en cortocircuito (a min) [m] 2,929

Por lo tanto, se cumplen las distancias mínimas entre fases en cortocircuito adoptadas entre fases.

Es por lo tanto apropiada la dimensión de anchura de la calle y la de separación entre conductores para cumplir los requisitos de aislamiento permanente y temporal en los casos más desfavorables y para la configuración propuesta, dado que estamos muy por encima de los $1,10 \ [m]$ de distancia de aislamiento temporal recomendada por la CIGRE.

2.3.7 Distancias mínimas a adoptar

En base a lo anteriormente expuesto y teniendo en cuenta lo que al respecto se indica en la ITC-RAT 12 e IEC-71 se proponen las siguientes distancias mínimas que deberán ser respetadas en la presente subestación:

2.3.8 Efectos sobre conductores en haz

Se específica en la norma "UNE-EN 60865-1 de 2013" que para realizar el cálculo de la fuerza de tracción se deben realizar una serie de pasos, los cuales realizaremos a continuación para dicho cálculo:

• Se verificará si existe entrechoque efectivo entre los conductores, para que exista dicho entrechoque se debe cumplir una de las siguientes condiciones:

$$\frac{a_s}{d} \le 2 \ y \ l_s \ge 50 \ a_s$$
$$\frac{a_s}{d} \le 2.5 \ y \ l_s \ge 70 \ a_s$$

Donde (a_s) es la distancia entre conductores de la misma fase, (d) es el diámetro de los conductores y (l_s) es la distancia media geométrica entre fases.

• Ya que no existe entrechoque efectivo se debe proceder a calcular si los conductores chocan entre sí o si no se chocan, para ello se deben realizar el cálculo del parámetro de choque.

Primero se hará el cálculo del factor V_1 , V_2 y V_3 , por medio de estos valores vamos a calcular la fuerza en los conductores de haz de la corriente de cortocircuito (F_v) , los factores de deformación que caracterizan la contracción del haz $(E_{st} \ y \ E_{pi})$ y por último el parámetro de entrechoque (j), que se calculan según indica la norma.

A partir de las fórmulas anteriores y con los resultados obtenidos, nos vamos a remitir a la condición de choque que nos plantea la norma:

" $j \ge 1$ Los subconductores entrechocan, j < 1 los subconductores reducen su distancia, pero no entrechocan"

• Luego de realizar el paso anterior, se procederá al cálculo de la fuerza de tracción en caso de entrechoque $F_{pi,d}$, para poder realizar este cálculo se debe obtener el valor del factor V_e y V_4 como lo pide la norma.

A continuación, se muestran los resultados a los cálculos anteriores:

Fuerza de tracción en haces (Fpi,d) [N]	11569,144
Condición de entrechoque efectivo	CUMPLE
Factor V1 del conductor	No Aplica
Factor V2 del conductor	No Aplica
Factor V3 del conductor	No Aplica
Factor V4 del conductor	No Aplica
Fuerza de la corriente de cortocircuito (Fv) [N]	No Aplica
Factor de deformación Estático (Est)	No Aplica
Factor de deformación Dinámico (Epi)	No Aplica
Parámetro de configuración de entrechoque (j)	No Aplica
Factor Ve del conductor	No Aplica
Factor de seguridad	6,48

Donde se cumple que la fuerza de tracción de los conductores en haz sobre los aisladores es menor que la carga de rotura del aislador.

2.4 RED DE TIERRAS INFERIORES

Para el cálculo de la red de tierras se tendrán en cuenta los valores máximos de tensiones de paso y contacto que establece el reglamento de Centros de Transformación, en su artículo "ITC-RAT 13", así como la norma "IEEE-80-2000: IEEE Guide for Safety in AC Substation Grounding".

La red de tierras a realizar en la zona de ampliación se conectará con la red de tierras del resto de la subestación de 132[kV]. Se estima que la red de tierras existente presenta la misma retícula que la empleada en la zona de la ampliación para realizar el cálculo de la malla en su conjunto.

Valor de la resistividad del terreno

Se considera como valor de la resistividad del terreno, a efectos de cálculo será de 200 $[\Omega \cdot m]$.

Tensiones de paso y contacto máximas admisibles

Los datos utilizados para el cálculo de la red de tierras son:

Tiempo de despeje de la falta (t) [seg]	0,5
Intensidad de la falta monofásica a tierra [kA]	3,41
Resistividad de la capa superficial (grava) (ρ) [Ω m]	3.000

Coeficiente reductor (Cs)	0,676688453
Resistividad superficial aparente (ρ_as) [Ω m]	2.030
Tensión aplicada admisible (Uca) [V]	204
Tensión aplicada admisible (Upa) [V]	2.040
Espesor de capa de gravilla (hs) [m]	0,1
Resistencia equivalente al calzado (Ra1) [Ω]	2000

Según la "ITC-RAT 13", para tiempos de duración del defecto de 0,5 [s] las tensiones de paso y de contacto admisibles aplicadas serán:

$$U_{ca} = 204 [V]$$

$$U_{pa} = 10 * U_{ca} = 2040 [V]$$

Según el ITC-RAT 13, las tensiones de paso y contacto máximas admisibles (considerando todas las resistencias) son:

Tensión de paso: $U_p = 10 * U_{ca} \left[1 + \frac{2 \cdot R_{a1} + 6 \cdot \rho_s}{1000} \right] [V]$

Tensión de contacto: $U_c = U_{ca} \left[1 + \frac{R_{a1}}{2} + 1.5 \cdot \rho_s \right] [V]$

Según la norma "IEEE-80-2013" dichos valores pueden ser calculados para una persona de 70 kg de peso promedio por medio de las siguientes expresiones:

Tensión de paso: $E_{paso} = (1000 + 6 \cdot C_s \cdot \rho_s) \frac{0.116}{\sqrt{t_s}} [V]$ Tensión de contacto: $E_{contacto} = (1000 + 1.5 \cdot C_s \cdot \rho_s) \frac{0.116}{\sqrt{t_s}} [V]$

Siendo C_s el factor de reducción siguiente: $C_s = 1 - \left(\frac{0.09 \cdot \left(1 - \frac{\rho}{\rho_s}\right)}{2 \cdot h_s + 0.09}\right)$

Donde:

ρ: Resistividad del terreno [$\Omega \cdot m$]

 ρ_s : Resistividad de la gravilla $[\Omega \cdot m]$

 h_s : Espesor capa de gravilla [m]

Con lo que se tendrán los siguientes resultados:

Tensión de paso (Vp) [V]	35.048
Tensión de contacto (Vp) [V]	1.029
Tensión de paso (E_paso) [V]	1516,193018
Tensión de contacto (E_contacto) [V]	502,0848343

Resistencia de puesta a tierra

Para calcular la resistencia de la red de tierras se utiliza la siguiente expresión:

$$R_g = \rho \cdot \left(\frac{1}{L} + \frac{1}{\sqrt{\frac{20}{A}}} \cdot \left(1 + \frac{1}{1 + h\sqrt{\frac{20}{A}}} \right) \right)$$

Donde:

ρ: Resistividad del terreno [$\Omega \cdot m$]

L: Longitud total de conductor enterrado [m]

h: Profundidad de enterramiento del conductor [m]

A: Superficie ocupada por la malla $[m^2]$

Por lo cual se tendrán los siguientes resultados:

Resistividad del terreno (ρ) [Ω m]	200
Longitud total del conductor enterrado (L) [m]	2.410
Profundidad de enterramiento del conductor (h) [m]	0,6
Superficie ocupada por la malla (A) [m2]	16.662
Resistencia de la red de tierras $[\Omega]$	0,77

Intensidad de defecto a tierra

El valor tomado de la intensidad monofásica de cortocircuito para la subestación según la norma "IEEE Std 80-2013/Cor1-2015. Capítulo 15" está dada por las siguientes expresiones:

$$I_g = \frac{Z_{equ}}{\left(Z_{equ} + R_q\right)} X$$

Donde:

 I_a : Intensidad disipada por la malla [kA]

 R_a : Resistencia de la malla $[\Omega]$

 Z_{equ} : Impedancia equivalente de todos los hilos de guarda $[\Omega]$, está dada por la siguiente expresión:

$$Z_{equ} = \frac{1}{\frac{1}{Z_{L1}} + \frac{1}{Z_{L2}} + \dots + \frac{1}{Z_{Ln}}}$$

X: Variable que depende de la suma de las diferencias de cada una de las aportaciones de intensidad que se dan a la I_{cc} , y se define con la siguiente expresión:

$$X = \sum_{i=1}^{n} (I_{Li} - I_{Li} \cdot P_{Ln})$$

 I_{Ln} : Intensidad de cortocircuito aportada por la Línea n, donde n toma los valores de cada una de las lineas[kA]

 P_{Ln} : Factor de reducción por inducción de la Línea n, donde n toma los valores de cada una de las lineas.

 Z_{Ln} : Impedancia en cadena de hilo de guarda de la Línea n, donde n toma los valores de cada una de las lineas [Ω]

Con lo cual tabulando tendremos:

Resistencia de la red de tierras [Ω]	0,77
Impedancia equivalente de todos los hilos de guarda $[\Omega]$	1,02
Variable X [kA]	2,95
Intensidad disipada por la malla (lg) [kA]	1,69

Evaluación de tensiones de paso y contacto

Los datos iniciales utilizados para el cálculo son:

Resistividad del terreno (ρ) [Ω m]	200
Espaciado medio entre conductores (D) [m]	13
Profundidad del conductor enterrado (h) [m]	0,6
Diámetro del conductor (d) [m]	0,0124
Longitud del conductor enterrado (L) [m]	2410
Intensidad disipada por la malla (lg) [kA]	1,69

La norma "IEEE-80-2013" propone desarrollar las siguientes expresiones para el cálculo de la tensión de contacto de verificación:

$$E_{contacto} = \rho K_m K_i \frac{I_g}{L} \quad [V]$$

$$K_{m} = \frac{1}{2\pi} \cdot \left[Ln \left(\frac{D^{2}}{16 \cdot h \cdot d} + \frac{(D+2 \cdot h)^{2}}{8 \cdot D \cdot d} - \frac{h}{4 \cdot d} \right) + \frac{K_{ii}}{K_{h}} \cdot Ln \left(\frac{8}{\pi \cdot (2 \cdot n - 1)} \right) \right]$$

$$K_{h} = \sqrt{1 + h}$$

$$K_{i} = 0.644 + 0.148 \cdot n$$

$$n_{b} = \sqrt{\frac{L_{p}}{4\sqrt{A}}}$$

$$K_{ii} = \frac{1}{(2n)^{\frac{2}{n}}}$$

$$n_{c} = \left[\frac{L_{x} \cdot L_{y}}{A}\right]^{\frac{0.7 A}{L_{x} \cdot L_{y}}}$$

$$n = n_{a} \cdot n_{b} \cdot n_{c} \cdot n_{d}$$

$$n_{a} = \frac{2 \cdot L_{c}}{L_{p}}$$

$$n_{d} = \frac{D_{m}}{\sqrt{L_{x}^{2} + L_{y}^{2}}}$$

Donde:

 L_c : Longitud del conductor de la (no incluye las picas) [m]

 L_p : Longitud del perímetro de la malla [m]

 L_x : Longitud máxima de la malla en la dirección x [m]

 L_y : Longitud máxima de la malla en la dirección y [m]

 D_m : Distancia máxima entre dos puntos en la malla [m]

L: Longitud efectiva de la malla para la tensión de paso [m]

Y las expresiones que permiten obtener la tensión de paso son:

$$E_{paso} = \rho \cdot K_s \cdot K_i \cdot \frac{I_g}{L} \quad [V]$$

$$K_s = \frac{1}{\pi} \cdot \left[\frac{1}{2 \cdot h} + \frac{1}{D+h} + \frac{1}{D} \cdot (1 - 0.5^{n-2}) \right]$$

Teniendo como resultado:

Parámetro Kh	1,264911064
Parámetro Ki	1,97209262
Parámetro Kii	0,525429214
Parámetro n	8,973598781
Parámetro na	9,269230769
Parámetro nb	1,00355203
Parámetro nc	0,88785282
Parámetro nd	1,086530899
Longitud del conductor de la malla (Lc) [m]	2410
Longitud del perímetro de la malla (Lp) [m]	520
Longitud máxima de la malla en la dirección x (Lx) [m]	132
Longitud máxima de la malla en la dirección y (Ly) [m]	109
Distancia máxima entre dos puntos lejanos de la malla (Dm) [m]	186

Parámetro Km	1,04527113
Parámetro Ks	0,312953196
Tensión de paso de verificación (E_paso) [V]	115
Tensión de contacto de verificación (E_contacto) [V]	289

Los valores obtenidos son menores que los valores límite tanto de la norma "IEEE-80-2000" como de la "ITC-RAT13"

Análisis de Conductor

La sección del conductor que constituye la malla de tierra debe ser tal que soporte la mitad de la intensidad (porque en el diseño de la malla se establece que en cada punto de puesta a tierra llegan al menos dos conductores de la malla) sin superar la temperatura máxima de 300 [°C] y con una duración de 1 segundo. Esto supone unas densidades de corriente máximas admisibles, según la norma "ITC-RAT-13" las densidades de corriente máximas para los conductores serán:

- 192 A/mm² para el cobre.
- 72 A/mm² para el acero.

Para determinar la sección mínima del conductor se utiliza la expresión que indica el estándar "IEEE 80", para conductores de cobre se tendrá que:

$$A = I \cdot \frac{1}{\sqrt{\left(\frac{TCAP \cdot 10^{-4}}{t_c \cdot \alpha_r \cdot \rho_r}\right) \ln\left(\frac{K_0 + T_m}{K_0 + T_\alpha}\right)}}$$

Donde:

I: Mitad de la intensidad de falta a tierra [kA]

 t_c : Tiempo duración de la falla [s]

 T_m : Temperatura máxima que pueden alcanzar el conductor y las uniones [°C]

 T_a : Temperatura ambiente [°C]

TCAP: Capacidad Térmica del conductor $\left[{}^{J}\!/_{cm^3}\,.\,\,{}^{\circ}_{C}\right]$ (Ver tabla 1 de "IEEE-80-2013")

 α_r : Coeficiente térmico de resistividad a 20 [°C] [$^1/_{^{\circ}C}$] (Ver tabla 1 de "IEEE-80-2013")

 ho_r : Resistencia del conductor a 20 °C [$\mu\Omega\cdot cm$] (Ver tabla 1 de "IEEE-80-2013")

Ko: Inversa del coeficiente térmico de resistividad a 0 [°C]. (Ver tabla 1 de "IEEE-80-2013")

A: Sección mínima del conductor $[mm^2]$

Obteniendo los siguientes resultados:

Intensidad de falla a tierra en RMS (I) [kA]	2,39
Tiempo de duración de la falla (tc) [seg]	1

Temperatura máxima que puede alcanzar el conductor y las uniones (Tm) [C]	200
Temperatura ambiente (Ta) [C]	40
Capacidad térmica del conductor (TCAP) [J/cm3*C]	3,4
Coeficiente térmico de la resistividad a 20 C (αr) [1/C]	0,00381
Inversa del coeficiente térmico de resistividad a 0 C (K0)	242
Sección mínima del conductor (A) [mm2]	15,92

La sección mínima necesaria es mucho menor que los $120\ [mm^2]$ del cable de Cobre que se va a utilizar, por lo que no habría problemas. Se utiliza este cable por ser el normalizado de Red Eléctrica.

A la vista de los resultados obtenidos los valores de las tensiones de paso y contacto están por debajo de los permitidos por el "ITC-RAT 13" y del "IEEE-80-2013", por lo que el diseño de la malla sería válido.

De todas formas, se medirán de forma práctica los valores de las tensiones de paso y contacto, una vez construida la Subestación, para asegurarse de que no hay peligro en ningún punto de la instalación.

2.5 RED DE TIERRAS SUPERIORES

El cometido del sistema de tierras superiores es la captación de las descargas atmosféricas y su conducción a la malla enterrada para que sean disipadas a tierra sin que se ponga en peligro la seguridad del personal y de los equipos de la subestación.

El sistema de tierras superiores consiste en un conjunto de hilos de guarda y/o de puntas Franklin sobre columnas. Estos elementos están unidos a la malla de tierra de la instalación a través de la estructura metálica que los soporta, que garantiza una unión eléctrica suficiente con la malla.

Para el diseño del sistema de protección de tierras superiores se ha adoptado el modelo electro geométrico de las descargas atmosféricas y que es generalmente aceptado para este propósito.

El criterio de seguridad que se establece es el de apantallamiento total de los embarrados y de los equipos que componen el aparellaje, siendo este criterio el que establece que todas las descargas atmosféricas que puedan originar tensiones peligrosas y que sean superiores al nivel del aislamiento de la instalación, deben ser captadas por los hilos de guarda.

Este apantallamiento se consigue mediante una disposición que asegura que la zona de captación de descargas peligrosas de los hilos de guarda y de las puntas Franklin contiene totalmente a las correspondientes partes bajo tensión.

Según la norma "UNE-EN 62305-1 de 2006" la zona de captura se establece a partir del radio crítico de cebado (r) y que viene dado por la expresión:

$$r=10\cdot I^{0,65}$$

Donde:

I[kA]: Valor de la cresta de la corriente, está dada por la siguiente expresión:

$$I = 1,1 \frac{U \cdot n}{Z}$$

U[kV]: Tensión soportada a impulsos tipo rayo, U = 1.050[kV]

n: Número de líneas conectadas a la subestación, n=2

 $Z[\Omega]$: Impedancia característica de las líneas, $Z = 400 [\Omega]$ (valor típico)

Sustituyendo y aplicando estos valores se obtiene:

Valor de la cresta de la corriente (kA)	2,888
Radio crítico de cebado (r)	19,922

El radio crítico de cebado con centro en las puntas Franklin, en el centro en los amarres de los hilos de guarda y en su punto más bajo, cuyo emplazamiento se refleja en los planos correspondientes, garantiza el apantallamiento total de la instalación.

Por otro lado, la subestación y su aparamenta asociada queda protegida frente a las descargas atmosféricas mediante el cable de guarda.

A continuación, se presentan las Figuras 4, 5 y 6 con vistas de secciones de la subestación en las cuales se puede apreciar el radio crítico aplicado.

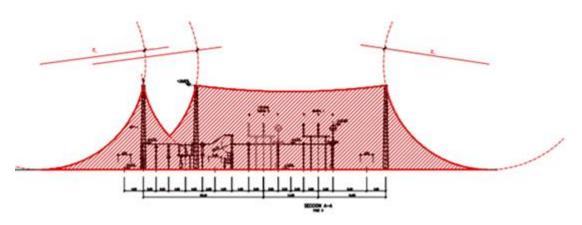


Figura 4. Vista sección A-A de la subestación.

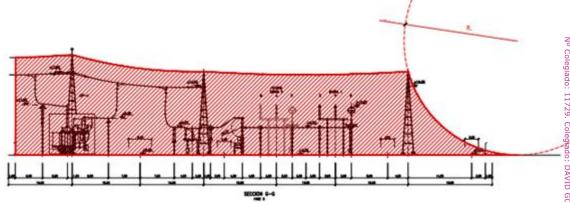


Figura 5. Vista sección G-G de la subestación.

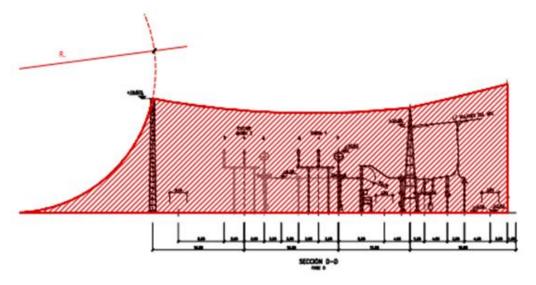


Figura 6. Vista sección D-O de la subestación.

Según la norma los cálculos obtenidos dan en la subestación una Zona de Protección contra Rayos (ZPR) de nivel 2, la cual supera las expectativas para la subestación.

CAPÍTULO 3. CONCLUSIÓN

A la vista de los resultados obtenidos los valores de las tensiones de paso y contacto están por debajo de los permitidos por la norma "ITC-RAT 13" y "IEEE-80-2000", por lo que el diseño de la malla sería válido.

De cualquier modo, se medirán de forma práctica los valores de las tensiones de paso y contacto, una vez finalizadas las obras en la subestación, para asegurarse de que no hay peligro en ningún punto de la instalación.

Madrid, mayo de 2022 El Ingeniero industrial

David González Jouanneau

Jefe del Departamento de Ingeniería de Subestaciones

Red Eléctrica de España, S.A.U.

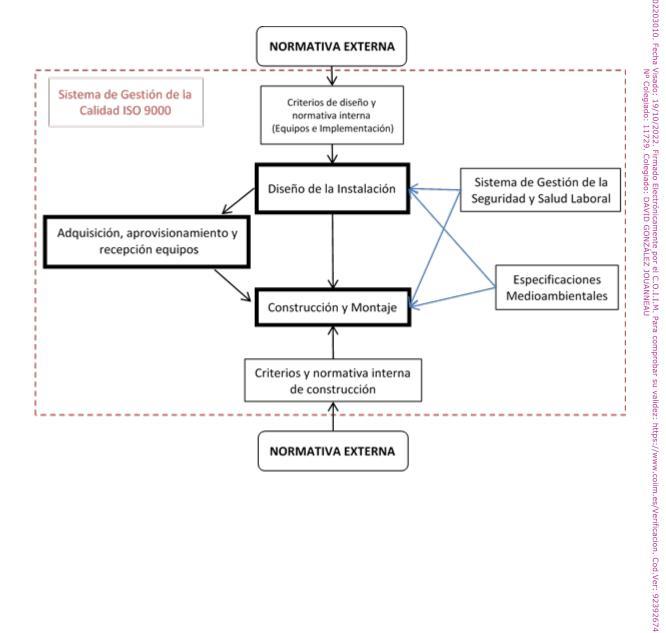
PROYECTO TÉCNICO ADMINISTRATIVO

AMPLIACIÓN DE LA SUBESTACIÓN DRAGONERA 132 kV. NUEVA POSICIÓN EVRE

DOCUMENTO 2
PLIEGO DE CONDICIONES TÉCNICAS

Dirección de Ingeniería y Construcción Dpto. Ingeniería de Subestaciones

Índice


CAPÍTULO 1.	OBJETO	3
	NORMATIVA APLICABLE	
	JIPAMIENTO Y MONTAJE	
2.2 OBR	A CIVIL	5
	Estructuras	
2.2.2	Varios	5
CAPÍTULO 3.	GESTIÓN DE CALIDAD	7
CAPÍTULO 4.	GESTIÓN MEDIOAMBIENTAL	8
CAPÍTULO 5.	SEGURIDAD EN EL TRABAJO	9
CAPÍTULO 6.	VFRIFICACIÓN Y VALIDACIÓN	10

CAPÍTULO 1. OBJETO

El objeto del presente Pliego de Condiciones es aportar la información necesaria para definir los materiales y equipos y su correcto montaje para lo que se han considerado los siguientes aspectos.

- 1º Normativa: Los equipos y su montaje será conforme a la normativa legal y de referencia.
- 2° Gestión de Calidad: El Plan de Calidad recoge las características técnicas de los equipos y su montaje. Además, la certificación ISO-9000 asegura la calidad de la instalación construida.
- 3° Gestión medioambiental: Con el objeto de minimizar los impactos que puedan acarrear la construcción y funcionamiento de la instalación.
- 4º Seguridad Laboral: Para asegurar que tanto el montaje como la explotación de los equipos de esta instalación cumplen con las medidas de seguridad requeridas.

CAPÍTULO 2. NORMATIVA APLICABLE

Se aplicarán por el orden en que se relacionan, cuando no existan contradicciones legales, las siguientes normas:

- Normativa de RED ELÉCTRICA (DYES; Procedimientos Técnicos; y Procedimientos de Dirección).
- Normativa Europea EN.
- Normativa CENELEC.
- Normativa CEI.
- Normativa UNE.
- Otras normas y recomendaciones (IEEE, MF, ACI, CIGRE, ANSI, AISC, etc).

2.1 EQUIPAMIENTO Y MONTAJE

El presente Proyecto ha sido redactado basándose en los anteriores reglamentos y normas, y más concretamente, en los siguientes, que serán de obligado cumplimiento:

- Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23. Real Decreto 337/2014, de 9 de mayo.
- Reglamento electrotécnico para baja tensión (REBT). Real Decreto 842/2002, de 2 de agosto, del Ministerio de Ciencia y Tecnología. BOE 18 de septiembre de 2002, e Instrucciones Técnicas Complementarias y sus modificaciones posteriores.
- Recomendaciones de la Unión Internacional de Telecomunicaciones (UIT-T) que le afecten.
- Ley 31/95 de 8 de noviembre de Prevención de Riesgos Laborales.
- R.D. 614/01 de 8 de junio sobre Disposiciones mínimas de seguridad y salud de los trabajadores frente al riesgo eléctrico.
- R.D. 1215/97 de 18 de julio sobre Equipos de trabajo.
- R.D. 486/97 de 14 de abril sobre Disposiciones mínimas de seguridad y salud en los lugares de trabajo.
- R.D. 487/97 de 14 de abril sobre Manipulación manual de cargas.
- R.D. 773/97 de 30 de mayo sobre Utilización por los trabajadores de equipos de protección individual.
- Ley 32/2006 de 18 de octubre Reguladora de la Subcontratación en el Sector de la Construcción.
- Prescripciones de seguridad para trabajos y maniobras en instalaciones eléctricas, de la Comisión Técnica Permanente de la Asociación de Medicina y Seguridad en el Trabajo de UNESA.
- R.D. 513/2017, de 22 de mayo, por el que se aprueba el Reglamento de instalaciones de protección contra incendios.
- Instrucciones técnicas de los fabricantes y suministradores de equipos.

En el caso de discrepancias entre las diversas normas se seguirá siempre el criterio más restrictivo.

2.2 OBRA CIVIL

2.2.1 Estructuras

- Acciones en la edificación
 - Documento básico de seguridad estructural DB-SE-AE "Acciones en la Edificación" del Código técnico de la edificación. R.D. 314/2006 de 17 de marzo, del Ministerio de la Vivienda.
 - Norma de construcción sismo-resistente: parte general y edificación (NCSR-02). R.D. 997/2002, de 27 de septiembre, del Ministerio de Fomento. BOE 11 de octubre de 2002.

Acero

 Documento básico de seguridad estructural DB-SE-A "Acero" del Código técnico de la edificación. R.D. 314/2006 de 17 de marzo, del Ministerio de la Vivienda.

Hormigón

- Código Estructural, aprobado por el Real Decreto 470/2021, de 29 de junio.

Forjados

- Código Estructural, aprobado por el Real Decreto 470/2021, de 29 de junio.
- Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23. Real Decreto 337/2014, de 9 de mayo.

2.2.2 Varios

- Normas tecnológicas de la edificación. Decreto del Ministerio de la Vivienda nº 3565/72, de 23 de diciembre. BOE del 15 de enero de 1973.
- Real Decreto 337/2014, de 9 de mayo, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23.
- Instrucciones técnicas complementarias en subestaciones. Real Decreto nº 842/02 de 2 de agosto, en BOE 18 de septiembre de 2002.
- Recomendaciones de la Unión Internacional de Telecomunicaciones (UIT-T) que le afecten.
- Ley 31/95 de 8 de noviembre de Prevención de Riesgos Laborales.
- R.D. 614/01 de 8 de junio sobre Disposiciones mínimas de seguridad y salud de los trabajadores frente al riesgo eléctrico.
- R.D. 1215/97 de 18 de julio sobre Equipos de trabajo.
- R.D. 486/97 de 14 de abril sobre Disposiciones mínimas de seguridad y salud en los lugares de trabajo.
- R.D. 487/97 de 14 de abril sobre Manipulación manual de cargas.
- R.D. 773/97 de 30 de mayo sobre Utilización por los trabajadores de equipos de protección individual.
- Ley 32/2006 de 18 de octubre Reguladora de la Subcontratación en el Sector de la Construcción.

- Prescripciones de seguridad para trabajos y maniobras en instalaciones eléctricas, de la Comisión Técnica Permanente de la Asociación de Medicina y Seguridad en el Trabajo de UNESA.
- Instrucciones técnicas de los fabricantes y suministradores de equipos.

En el caso de discrepancias entre las diversas normas se seguirá siempre el criterio más restrictivo.

CAPÍTULO 3. GESTIÓN DE CALIDAD

Afecta a los procesos: ingeniería, construcción, calificación de proveedores, compras, transferencia de instalaciones y gestión de proyectos y también a los recursos: cualificación de las personas, equipos de inspección, medida y ensayo y homologación de equipos. Sistema de calidad certificado que cumple con la normativa ISO 9000.

CAPÍTULO 4. GESTIÓN MEDIOAMBIENTAL

Las obras del proyecto se ejecutan garantizando el cumplimiento de la legislación y reglamentación aplicable. En el *Anexo 2.1 Especificaciones técnicas de carácter ambiental* de este documento se detallan los aspectos medioambientales que rigen la ejecución de este proyecto.

Rfa: TI.S/2022/J-0848-S1421 Página 8 de 10

CAPÍTULO 5. SEGURIDAD EN EL TRABAJO

Conforme a lo dispuesto en el Real Decreto 1627/1997, de 24 de octubre, por el que se establecen disposiciones mínimas de seguridad y salud en obras de construcción, al amparo de la Ley 31/1995, de 8 de noviembre, de Prevención de Riesgos Laborales, se incluye en el presente proyecto, el *Estudio de Seguridad y Salud* correspondiente para su ejecución.

CAPÍTULO 6. VERIFICACIÓN Y VALIDACIÓN

De acuerdo con los sistemas de gestión certificados, se garantiza el correcto montaje verificado y validando la instalación y equipos mediante:

• Pruebas en vacío

Una vez finalizados los trabajos de obra civil y montaje electromecánico se procederá a la realización de las pruebas en vacío de la Instalación de acuerdo con las instrucciones técnicas correspondientes recogida en la normativa interna.

Pruebas en tensión

Las pruebas en tensión tendrán por objeto comprobar la adecuación al uso de la instalación conforme a los criterios funcionales establecidos en el Proyecto.

Los protocolos de las pruebas a realizar, así como los criterios para su ejecución serán redactados conforme a lo especificado en la documentación técnica aplicable.

Madrid, mayo de 2022 El Ingeniero industrial

David González Jouanneau

Jefe del Departamento de Ingeniería de Subestaciones

Red Eléctrica de España, S.A.U.

PROYECTO TÉCNICO ADMINISTRATIVO

AMPLIACIÓN DE LA SUBESTACIÓN DRAGONERA 132 kV. NUEVA POSICIÓN EVRE

DOCUMENTO 2 ANEXO 1

REQUISITOS AMBIENTALES ESTUDIO DE GESTIÓN DE RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN

Dirección de Ingeniería y Construcción Dpto. Ingeniería de Subestaciones

Índice

CAF	PÍTUL	O 1.	ÁMBITO DE APLICACIÓN	3
CAF	PÍTUL	O 2.	REQUISITOS AMBIENTALES	4
	2.1	REC	QUISITOS DE CARÁCTER GENERAL	4
	2.1	.1	Condicionados de los organismos de la Administración	4
	2.1	.2	Áreas de almacenamiento temporal o de trasiego de combustible	4
	2.1	.3	Cambios de aceites y grasas	4
	2.1	.4	Campamento de obra	4
	2.1	.5	Gestión de residuos	4
	2.1	.6	Incidentes con consecuencias ambientales	5
	2.2	REC	QUISITOS ESPECÍFICOS PARA LA OBRA CIVIL	5
	2.3	REC	QUISITOS ESPECÍFICOS PARA EL MONTAJE ELECTROMENCÁNICO	5
	2.3	.1	Llenado de equipos con aceite	5
	2.3	.2	Llenado de equipos con SF ₆	5
	2.4	ACC	ONDICIONAMIENTO FINAL DE LA OBRA	5
	PÍTUL MOLIC		ESTUDIO DE GESTIÓN DE RESIDUOS DE CONSTRUCCIÓN 7	Y DE
	3.1	AN	TECEDENTES	7
	3.1	.1	Objeto	7
	3.1	.2	Situación y descripción general del proyecto	
	3.1	.3	Descripción general de los trabajos	7
	3.2	EST	IMACIÓN DE RESIDUOS A GENERAR	7
	3.3	ME	DIDAS DE PREVENCIÓN DE GENERACIÓN DE RESIDUOS	9
	3.4 OBRA		DIDAS DE SEPARACIÓN, MANEJO Y ALMACENAMIENTO DE LOS RESIDU	OS EN
	3.5	DES	STINOS FINALES DE LOS RESIDUOS GENERADOS	12
	3.6	VAL	LORACIÓN DEL COSTE PREVISTO DE GESTIÓN	14

CAPÍTULO 1. ÁMBITO DE APLICACIÓN

Este documento tiene por objeto establecer los requisitos de carácter ambiental que se deben cumplir en los trabajos de obra civil y montaje electromecánico que se van a realizar en la ampliación de la subestación DRAGONERA 132 kV para minimizar los posibles impactos ambientales que puede conllevar el desarrollo de los trabajos de construcción.

El alcance de esta especificación comprende todos los trabajos de obra civil y montaje electromecánico de la subestación.

CAPÍTULO 2. REQUISITOS AMBIENTALES

2.1 REQUISITOS DE CARÁCTER GENERAL

Se contemplará un estricto cumplimiento de los requisitos medioambientales legales que en cada momento establecidos en los distintos ámbitos: europeo, estatal, autonómico y municipal. Las *Especificaciones ambientales de construcción de subestaciones* que regirán la ejecución de la obra indicarán todos los requisitos a cumplir en relación con los trabajos.

2.1.1 Condicionados de los organismos de la Administración

Durante el proceso de Autorización Administrativa los organismos públicos y entidades que puedan ser afectadas por el desarrollo del proyecto emitirán los condicionados correspondientes que serán aplicados en el desarrollo de la ejecución de la obra.

2.1.2 Áreas de almacenamiento temporal o de trasiego de combustible

Para evitar que las zonas de almacenamiento temporal o de trasiego de combustible se dispongan sobre suelo desnudo o sin mecanismos de retención de posibles derrames, se contará con una bandeja metálica sobre la que se colocaran los recipientes que contengan combustible.

La bandeja será estanca, con un bordillo mínimo de 10 cm y con capacidad igual o mayor que la del mayor de los recipientes que se ubiquen en ella. Será necesario disponer de una lona para tapar la bandeja con el fin de evitar que en caso de lluvia se llene de agua, a no ser que el almacenamiento se realice bajo cubierta.

En el caso de que sea necesario disponer de grupos electrógenos, su tanque de almacenamiento principal deberá tener doble pared y todas las tuberías irán encamisadas. Si no es así se colocarán sobre bandeja estanca de las características anteriormente descritas.

2.1.3 Cambios de aceites y grasas

No se verterán aceites y grasas al suelo, por lo que se tomarán todas las medidas preventivas necesarias.

El cambio de aceites de la maquinaria se realizará en un taller autorizado. Si ello no fuera posible se efectuará sobre el terreno utilizando siempre los accesorios necesarios (recipiente de recogida de aceite y superficie impermeable) para evitar posibles vertidos al suelo.

2.1.4 Campamento de obra

El campamento de obra dispondrá de los contenedores necesarios para los residuos sólidos urbanos que generen las personas que trabajan en la obra.

No serán utilizadas fosas sépticas/pozos filtrantes en la instalación sin autorización de la Confederación Hidrográfica correspondiente. Preferentemente se usarán depósitos estancos de acumulación o de wáter químico, que serán desmontados una vez hayan finalizados los trabajos. El mantenimiento de estos sistemas será el adecuado para evitar olores y molestias en el entorno de los trabajos.

2.1.5 Gestión de residuos

La gestión de los residuos se realizará conforme a la legislación específica vigente. Será según lo establecido en los siguientes documentos:

- Estudio de gestión de residuos de construcción y demolición. Incluido como anexo al presente documento.

Rfa: TI.S/2022/J-0848-S1421

 Plan de gestión de residuos de construcción y demolición. Entregado por el contratista, aceptado por el Departamento de Medio Ambiente de RED ELÉCTRICA y aprobado por la dirección facultativa.

2.1.6 Incidentes con consecuencias ambientales

Se consideran incidencias medioambientales aquellas situaciones que por su posible afección al medio requieren actuaciones de emergencia.

Los principales incidentes que pueden tener lugar son incendios y fugas/derrames de material contaminante.

El riesgo de incendios viene asociado principalmente al almacenamiento y manipulación de productos inflamables. Se establecerán todas las medidas de prevención de incendios y se prestará especial atención para que los productos inflamables no entren en contacto con fuentes de calor: trabajo de soldaduras, recalentamiento de máquinas, cigarros etc. En el lugar de trabajo se contará con los extintores adecuados.

Además de las medidas de prevención de fugas y derrames (descritas en apartados anteriores) se contará en obra con los materiales necesarios para la actuación frente a derrames de sustancias potencialmente contaminantes.

2.2 REQUISITOS ESPECÍFICOS PARA LA OBRA CIVIL

Limpieza de cubas de hormigonado

Se delimitará y señalizará de forma clara una zona para la limpieza de las cubas de hormigonado para evitar vertidos de este tipo en las proximidades de la subestación. La zona será regenerada una vez finalizada la obra, llevándose los residuos a vertedero controlado y devolviéndola a su estado y forma inicial.

2.3 REQUISITOS ESPECÍFICOS PARA EL MONTAJE ELECTROMENCÁNICO

2.3.1 Llenado de equipos con aceite

Cuando se llenan de aceite las máquinas de potencia se tomarán las máximas precauciones para evitar posibles accidentes con consecuencias medioambientales.

No se comenzará el llenado de equipos hasta que no estén operativos los fosos de recogida de aceite.

Como complemento y para evitar un accidente, debajo de todos los empalmes de tubos utilizados en la maniobra se deberán situar recipientes preparados para la recogida de posibles pérdidas, con el tamaño suficiente para evitar vertidos al suelo.

2.3.2 Llenado de equipos con SF₆

El llenado de equipos con SF_6 se llevará a cabo por personal especializado, evitándose así fugas de gas a la atmósfera. Las botellas de SF_6 (vacías y con SF_6 que no se ha utilizado en el llenado) serán retiradas por el proveedor para garantizar la adecuada gestión de las mismas.

2.4 ACONDICIONAMIENTO FINAL DE LA OBRA

Una vez finalizados todos los trabajos se realizará una revisión del estado de limpieza y conservación del entorno de la subestación, con el fin de proceder a la recogida de restos de todo tipo que pudieran haber quedado acumulados y gestionarlos adecuadamente.

Se procederá a la rehabilitación de todos los daños ocasionados sobre las propiedades derivados de la ejecución de los trabajos.

Se revisará la situación de todas las servidumbres previamente existentes y el cumplimiento de los acuerdos adoptados con particulares y administración, acometiendo las medidas correctoras que fueran precisas si se detectan carencias o incumplimientos.

Donde sea viable, se restituirá la forma y aspecto originales del terreno.

De forma inmediata a la finalización de la obra y en el caso que sea necesario, se revegetarán las superficies desprovistas de vegetación que pudieran estar expuestas a procesos erosivos y si así se ha definido, se realizarán los trabajos de integración paisajística de la instalación.

CAPÍTULO 3. ESTUDIO DE GESTIÓN DE RESIDUOS DE CONSTRUCCIÓN Y DE DEMOLICIÓN

3.1 ANTECEDENTES

3.1.1 Objeto

El presente *Estudio de residuos* se realiza para minimizar los impactos derivados de la generación de residuos en la construcción del presente proyecto, estableciendo las medidas y criterios a seguir para minimizar la generación de residuos, segregar y almacenar correctamente los residuos generados y proceder a la gestión más adecuada para cada uno de ellos. El *Estudio* se lleva a cabo en cumplimiento del R.D. 105/2008, de 1 de febrero, por el que se regula la *Producción y gestión de los residuos de construcción y demolición* y se ha redactado según los criterios contemplados en el artículo 4 de dicho R.D.

3.1.2 Situación y descripción general del proyecto

La situación y descripción general del proyecto está reflejado en el capítulo 2 del documento 1: *Memoria* del presente Proyecto Técnico Administrativo.

3.1.3 Descripción general de los trabajos

Las actividades a llevar a cabo y que van a dar lugar a la generación de residuos van a ser las siguientes:

- Realización de acopios, campamento de obra e instalación de medios auxiliares.
- Movimiento de tierras: excavaciones (cimentaciones), movimientos y traslados de tierras.
- Obra civil: cimentaciones, hormigonados, drenajes etc.
- Montaje electromecánico: aparamenta eléctrica, servicios auxiliares etc.
- Limpieza de obra y restauración.
- Actividades auxiliares (oficina).

3.2 ESTIMACIÓN DE RESIDUOS A GENERAR

Durante los trabajos descritos se prevé generar los siguientes residuos, codificados de acuerdo a lo establecido en la Ley 7/2022, de 8 de abril, de residuos y suelos contaminados para una economía circular (Lista europea de residuos):

Tipo residuo	Código LER
RESIDUOS NO PI	ELIGROSOS
Excedentes de excavación	170504
Restos de hormigón	170101
Papel y cartón	150101 – 200101
Maderas	170201
Plásticos (envases y embalajes)	170203
Chatarras metálicas	170405/170407/170401/170402
Restos asimilables a urbanos	200301

Tipo residuo	Código LER
Restos asimilables a urbanos. Contenedor amarillo: metales y plásticos (si se segregan)	150102/150104/150105/150106
Residuos vegetales (podas y talas)	200201
RESIDUOS PELIGROSOS	
Trapos impregnados	150202*
Tierras contaminadas	170503*
Envases que han contenido sustancias peligrosas	150110*/150111*

Es necesario aclarar que, en el *Plan de gestión residuos* (que se elabora en una etapa de proyecto posterior al presente estudio por los contratistas responsables de acometer los trabajos, poseedores de los residuos) e incluso durante la propia obra se podrá identificar algún otro residuo. Asimismo la estimación de cantidades, que se incluye en la tabla siguiente, es aproximada, teniendo en cuenta la información de la que se dispone en la etapa en la cual se elabora el proyecto de ejecución. Las cantidades, por tanto, también deberán ser ajustadas en los correspondientes Planes de gestión de residuos.

Tipo de residuo	Código	Unidad	PARQUE 132 kV		TOTAL
Tipo de residuo	Codigo	UTIIUau	O.C.	MONTAJE	TOTAL
Excedentes de excavación(*)	170101	m^3	3.248	0	3.248
Restos de hormigón	170101	m^3	41	0	41
Papel y cartón	200101	kg	1.218	40	1.258
Maderas	170201	kg	1.624	500	2.124
Plásticos (envases y embalajes)	170203	kg	406	40	446
Chatarras metálicas	170405 170407 170401 170402	kg	1.218	600	1.818
Restos asimilables a urbanos	200301	kg	81	45	126
Restos asimilables a urbanos. Contenedor amarillo: metales y plásticos (Si segregan)	150102 150104 150105 150106	kg	406	45	451
Trapos impregnados	150202*	kg	8	2	10
Tierras contaminadas	170503*	m³	4	0	4
Envases que han contenido sustancias peligrosas	150110* 150111*	kg	16	8	24
Residuos vegetales (podas y talas)	200201	kg	1.624	0	1.624

^(*) La cantidad estimada se corresponde con los excedentes de excavación que no está previsto reutilizar en la propia obra.

3.3 MEDIDAS DE PREVENCIÓN DE GENERACIÓN DE RESIDUOS

Trabajos de construcción:

Como norma general es importante separar aquellos productos sobrantes que pudieran ser reutilizables de modo que en ningún caso puedan enviarse a vertederos.

Además, es importante separar los residuos desde el origen, para evitar contaminaciones, facilitar su reciclado y evitar generar residuos derivados de la mezcla de otros.

Se exponen a continuación algunas buenas prácticas para evitar/minimizar la generación de algunos residuos:

- Cerámicas mortero y hormigón:
 - Reutilización, en la medida de lo posible en la propia obra: rellenos.
- Medios auxiliares (pallets de madera), envases y embalajes:
 - Utilizar materiales cuyos envases/embalajes procedan de material reciclado.
 - No separar el embalaje hasta que no vayan a ser utilizados los materiales.
 - Guardar los embalajes que puedan ser reutilizados inmediatamente después de separarlos del producto. Gestionar la devolución al proveedor en el caso de ser este el procedimiento establecido (ej. Botellas de SF₆ vacías o medio llenas).
 - Los pallets de madera se han de reutilizar cuantas veces sea posible.
- Residuos metálicos:
 - Separarlos y almacenarlos adecuadamente para facilitar su reciclado
- Aceites y grasas:
 - Realizar el mantenimiento de la maquinaria y cambios de aceites en talleres autorizados.
 - Si es imprescindible llevar a cabo alguna operación de cambio de aceites y grasas en la obra, sutilizar los accesorios necesarios para evitar posibles vertidos al suelo (recipiente de recogida de aceite y superficie impermeable).
 - Controlar al máximo las operaciones de llenado de equipos con aceites para evitar que se produzca cualquier vertido.
- Tierras contaminadas

Establecer las medidas preventivas para evitar derrames de sustancias peligrosas:

- Disponer de bandeja metálica para almacenamiento de combustibles. Primar la utilización de boquillas antigoteo si se utilizasen garrafas de repostaje.
- Resguardar de la lluvia las zonas de almacenamiento (mediante techado o uso de lona impermeable), para evitar que las bandejas se llenen de agua.
- Disponer de grupos electrógenos cuyo tanque de almacenamiento principal tenga doble pared y cuyas tuberías vayan encamisadas. Si no es así colocar en una bandeja estanca o losa de hormigón impermeabilizada y con bordillo.
- Controlar al máximo las operaciones de llenado de equipos con aceites para evitar que se produzca cualquier vertido. No realizar llenados de máquinas de potencia sin estar operativos los fosos de recogida de aceite. Colocar recipientes o material absorbente debajo de todos los empalmes de tubos utilizados durante la maniobra, para la recogida de posibles pérdidas.

- Buenas prácticas en los trasiegos.

3.4 MEDIDAS DE SEPARACIÓN, MANEJO Y ALMACENAMIENTO DE LOS RESIDUOS EN OBRA

Los requisitos en cuanto a la segregación, almacenamiento, manejo y gestión de los residuos en obra están incluidos en las especificaciones ambientales, formando así parte de las prescripciones técnicas del proyecto.

Para que se pueda desarrollar una correcta segregación y almacenamiento de residuos en la obra, todo el personal implicado deberá estar adecuadamente formado sobre cómo separar y almacenar cualquier tipo de residuos que pueda derivarse de los trabajos.

Segregación

Para una correcta valorización o eliminación se realizará una segregación previa de los residuos, separando aquellos que por su no peligrosidad (residuos urbanos y asimilables a urbanos) y por su cantidad puedan ser depositados en los contenedores específicos colocados por el correspondiente ayuntamiento, de los que deban ser llevados a vertedero controlado y de los que deban ser entregados a un gestor autorizado (residuos peligrosos). Para la segregación se utilizarán bolsas o contenedores, debidamente etiquetados, que impidan o dificulten la alteración de las características de cada tipo de residuo.

La segregación de residuos en obra ha de ser la máxima posible, para facilitar la reutilización de los materiales y que el tratamiento final sea el más adecuado según el tipo de residuo.

En ningún caso se mezclarán residuos peligrosos y no peligrosos.

Si en algún caso no resultara técnicamente viable la segregación en origen, el poseedor (contratista) podrá encomendar la separación de fracciones de los distintos residuos no peligrosos a un gestor de residuos externo a la obra, teniendo que presentar en este caso, la correspondiente documentación acreditativa conforme el gestor ha realizado los trabajos.

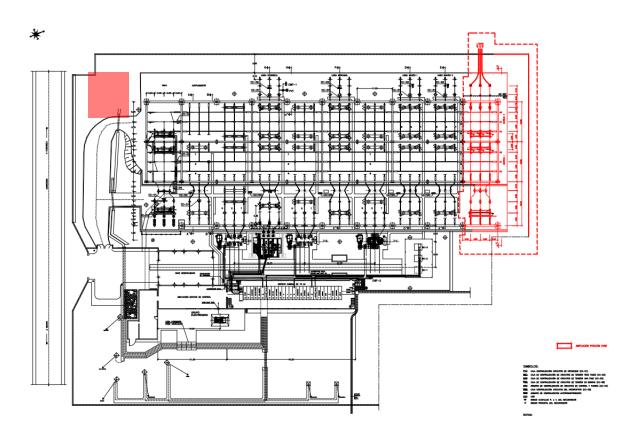
En el campamento de obra, se procurará además segregar los RSU en las distintas fracciones (envases y embalajes, papel, vidrio y resto).

Almacenamiento:

Desde la generación de los residuos hasta su eliminación o valorización final, éstos serán almacenados de forma separada en el lugar de trabajo, según vaya a ser su gestión final, como se ha indicado en el punto anterior.

Para las zonas de almacenamiento se cumplirán los siguientes criterios:

- Habrá una separación clara entre la zona de Residuos Peligrosos y la de Residuos No Peligrosos.
- Serán seleccionadas, siempre que sea posible, de forma que no sean visibles desde carreteras o lugares de tránsito de personas pero con facilidad de acceso para poder proceder a la recogida de los mismos
- Estarán debidamente señalizadas mediante marcas en el suelo, carteles, etc. para que cualquier persona que trabaje en la obra sepa su ubicación.



- Los contenedores de residuos peligrosos estarán identificados según se indica en la legislación aplicable con etiquetas o carteles resistentes a las distintas condiciones meteorológicas, colocados en un lugar visible y que proporcionen la siguiente información: descripción del residuo, icono de riesgos, código del residuo, datos del productor y fecha de inicio de almacenamiento (la del primer depósito).
- Las zonas de almacenamiento de residuos peligrosos estarán protegidas de la lluvia y contarán con suelo impermeabilizado o bandejas de recogida de derrames accidentales.
- Los residuos que por sus características puedan ser arrastrados por el viento, como plásticos (embalajes, bolsas...), papeles (sacos de mortero...) etc. deberán ser almacenados en contenedores cerrados, a fin de evitar su diseminación por la zona de obra y el exterior del recinto.
- Se delimitará e identificará de forma clara una zona para la limpieza de las cubas de hormigonado para evitar vertidos de este tipo en las proximidades de la subestación. La zona será regenerada una vez finalizada la obra, llevándose los residuos a vertedero controlado y devolviéndola a su estado y forma inicial.
- Se evitará el almacenamiento de excedentes de excavación en cauces y sus zonas de policía.

Además de las zonas definidas, el campamento de obra deberá disponer de uno o más contenedores, con su correspondiente tapadera (para evitar la entrada del agua de lluvia) para los residuos sólidos urbanos (restos de comidas, envases de bebidas, etc.) que generen las personas que trabajan en la obra. Estos contenedores deberán estar claramente identificados, de forma que todo el personal de la obra sepa donde se almacena cada tipo de residuo.

En el croquis siguiente se muestran las zonas destinadas al almacenamiento de residuos. Estas zonas podrán ser redefinidas por el contratista que reflejará los cambios en el correspondiente Plan de residuos. Además, en dicho plan se incluirá la descripción de los distintos contenedores que se prevé utilizar para los distintos residuos.

3.5 DESTINOS FINALES DE LOS RESIDUOS GENERADOS

La gestión de los residuos se realizará según lo establecido en la legislación específica vigente.

Siempre se favorecerá la reutilización y valoración de los residuos frente a la eliminación en vertedero controlado de los mismos.

- Residuos no peligrosos
 - RSU: Los residuos sólidos urbanos y asimilables (papel, cartón, vidrio, envases de plástico) separados en sus distintas fracciones serán llevados a un vertedero autorizado o recogidos por gestores autorizados. En el caso de no ser posible la recogida por gestor autorizado y de tratarse de pequeñas cantidades, se podrán depositar en los distintos contenedores que existan en el Ayuntamiento más próximo.
 - Excedentes de excavación, escombros, y excedentes de hormigón: como ya se ha comentado dependiendo de la Caracterización ambiental de los mismos, se tratará de reutilizar en la obra, si no es posible se gestionarán en el vertedero autorizado, adecuado a la naturaleza resultante de la Caracterización.

- Chatarra: se entregará a gestor autorizado para que proceda al reciclado de las distintas fracciones.

Residuos peligrosos

Los residuos peligrosos se gestionarán mediante gestor autorizado. Se dará preferencia a aquellos gestores que ofrezcan la posibilidad de valorización como destino final frente a la eliminación.

Antes del inicio de las obras los contratistas están obligados a programar la gestión de los residuos que prevé generar. En el *Plan de gestión de residuos de construcción* se reflejará la gestión prevista para cada tipo de residuo: planes para la reutilización de excedentes de excavación u hormigón, retirada a vertedero y gestiones a través de gestor autorizado (determinando los gestores autorizados), indicando el tratamiento final que se llevará a cabo en cada caso.

Como anexo a dicho plan el contratista deberá presentar la documentación legal necesaria para llevar a cabo las actividades de gestión de residuos:

- Acreditación como productor de residuos en la Comunidad Autónoma en la que se llevan a cabo los trabajos.
- Autorizaciones de los transportistas y gestores de residuos (las correspondientes según se trate de residuos peligrosos o no peligrosos).
- Autorizaciones de vertederos y depósitos.
- Contratos de tratamiento de los residuos que se prevé generar (residuos peligrosos).

Al final de los trabajos, el contratista proporcionará la documentación acreditativa de las gestiones de residuos realizadas:

- Documentos de identificación.
- Notificaciones de traslado.
- o Albaranes de retirada o documentos de entrega de residuos no peligrosos.
- o Permisos de vertido/reutilización de excedentes de excavación.

Para obras de corta duración (máximo 3 meses) se podrá realizar una entrega al finalizar la obra. En el caso de obras con mayor duración se entregará antes de final de mes las evidencias de las gestiones realizadas en el mes anterior.

3.6 VALORACIÓN DEL COSTE PREVISTO DE GESTIÓN

En la tabla siguiente se incluye una estimación de los costes de la gestión de los residuos. Se resalta que el coste es muy aproximado pues los precios están sometidos a bastante variación en función de los transportistas y gestores utilizados y las cantidades estimadas en este estado del proyecto también se irán ajustando con el desarrollo del mismo.

TIPO DE RESIDUO	CÓDIGO	UNIDAD	COSTE (EUROS)
Excedentes de excavación	170504	m³	22.736
Restos de hormigón	170101	m^3	300
Papel y cartón	150101 200101	kg	2.516
Maderas	170201	kg	2.124
Plásticos (envases y embalajes)	170203	kg	2.230
Chatarras metálicas	170405 170407 170401 170402	kg	1.818
Restos asimilables a urbanos	200301	kg	252
Restos asimilables a urbanos. Contenedor amarillo: metales y plásticos (Si segregan)	150102 150104 150105 150106	kg	902
Trapos impregnados	150202*	kg	101
Tierras contaminadas	170503*	m^3	1.786
Envases que han contenido sustancias peligrosas	150110* 150111*	kg	242
Residuos vegetales (podas y talas)	200201	kg	21

Nota: los costes reflejados son costes estimados, dado que para su cálculo se han tomado precios de referencia. Los costes serán actualizados en el correspondiente plan de residuos, a entregar por el contratista.

Madrid, mayo de 2022 El Ingeniero industrial

David González Jouanneau

Jefe del Departamento de Ingeniería de Subestaciones

Red Eléctrica de España, S.A.U.

PROYECTO TÉCNICO ADMINISTRATIVO

AMPLIACIÓN DE LA SUBESTACIÓN DRAGONERA 132 kV. NUEVA POSICIÓN EVRE

DOCUMENTO 2 ANEXO 2

ESTUDIO DE SEGURIDAD Y SALUD LABORAL

Dirección de Ingeniería y Construcción Dpto. Ingeniería de Subestaciones

Índice

CAPÍTUI	LO 1.	OBJETO DE ESTE ESTUDIO	4
CAPÍTUI	LO 2.	CARACTERÍSTICAS DE LA OBRA	<u>5</u>
2.1	SITU	JACIÓN Y DESCRIPCIÓN DE LA OBRA	<u>5</u>
2.2	PRE	SUPUESTO, PLAZO DE EJECUCIÓN Y MANO DE OBRA	7
2.3	CON	JTROL DE ACCESOS	7
2.4	TRA	BAJOS PREVIOS, INTERFERENCIAS Y SERVICIOS AFECTADOS	
2.5		DADES CONSTRUCTIVAS QUE COMPONEN LA OBRA	
2.5	5.1	Movimiento de tierras	8
2.5	5.2	Obra civil	
2.5	5.3	Montaje de estructuras y equipos	9
2.6	IDEI	NTIFICACIÓN DE RIESGOS	ç
2.0	5.1	Organización de la seguridad	10
2.0	5.2	Principios generales aplicables durante la ejecución de la obra	11
2.0	5.3	Formación	11
2.6	5.4	Medicina preventiva	12
2.6	5.5	Medios de protección	12
2.7	LOC	ALES DE DESCANSO Y SERVICIOS HIGIÉNICOS	12
2.8	DISF	POSICIONES DE EMERGENCIA	12
2.8	3.1	Vías de evacuación	12
2.8	3.2	Iluminación	12
2.8	3.3	Ventilación	
2.8	3.4	Ambientes nocivos y factores atmosféricos	13
2.8	3.5	Detección y lucha contra incendios	13
2.8	3.6	Primeros auxilios	14
2.9	PLA	N DE SEGURIDAD	14
CAPÍTUI	LO 3.	PLIEGO DE CONDICIONES	15
3 1	NOF	RMATIVA LEGAL DE APLICACIÓN	15

3.2 NO	RMATIVA INTERNA DE RED ELÉCTRICA	. 15
CAPÍTULO 4.	PRESUPUESTO DE SEGURIDAD	16

CAPÍTULO 1. OBJETO DE ESTE ESTUDIO

Este Estudio de Seguridad y Salud establece las medidas de Seguridad que deben adoptarse en los trabajos de obra civil y montaje electromecánico a realizar en la ampliación de la subestación DRAGONERA 132 kV. Facilitando la aplicación que la Dirección Facultativa debe realizar de tales medidas, conforme establece el R.D. 1627/97 por el que se establecen disposiciones mínimas de Seguridad en las Obras de Construcción.

El presente Estudio tiene carácter obligatorio y contractual para todas las empresas que participan en el desarrollo de la obra.

Este Estudio se incluye como anexo a todos los contratos firmados entre Red Eléctrica de España, S. A. (en adelante, RED ELÉCTRICA) y las empresas contratistas que intervengan en la obra.

La empresa contratista quedará obligada a elaborar un Plan de seguridad y salud en el que se analicen, estudien, desarrollen y complementen, en función de su propio sistema de ejecución de la obra, las previsiones contenidas en este Estudio.

RED ELÉCTRICA se reserva el derecho de la interpretación última del Plan de seguridad que se apruebe.

CAPÍTULO 2. CARACTERÍSTICAS DE LA OBRA

2.1 SITUACIÓN Y DESCRIPCIÓN DE LA OBRA

La subestación de DRAGONERA 132 kV está situada en el término municipal de Maó, provincia de Islas Baleares, Islas Baleares.

La ubicación queda reflejada en el plano de situación geográfica del documento Planos del presente proyecto.

Atendiendo las características ambientales del emplazamiento seleccionado esta instalación se realiza con tecnología convencional con aislamiento en aire.

Las condiciones ambientales del emplazamiento son las siguientes:

- Altura media sobre el nivel del mar...... 64 m
- Temperaturas extremas..... + 40° C/-20° C
- Contaminación ambiental.......Bajo
- Nivel de niebla Medio

Para el cálculo de la sobrecarga del viento, se ha considerado viento horizontal con velocidad de 140 km/h. El la instalación de la nueva posición del parque de 132 kV se realizará quedando este parque con la si-guiente distribución:

	Existente		Con la ampliación	1	
Calle	Posición	N° de inte- rruptores	Posición	N° de inte- rruptores	N° de inte- rruptores nuevos
0	Transformador distribución TRP4	1	Transformador distribución TRP4	1	0
1	Acoplamiento de barras principa- les ACP	1	Acoplamiento de barras principa- les ACP	1	0
2	Transformador distribución TRP3	1	Transformador distribución TRP3	1	0
3	Ciudadela	1	Ciudadela	1	0
4	Transformador distribución TRP2	1	Transformador distribución TRP2	1	0
5	Mercadal	1	Mercadal	1	0
6	Transformador distribuciónTRP1	1	Transformador distribuciónTRP1	1	0
7	Mahon 1	1	Mahon 1	1	0
8	Mahon 2	1	Mahon 2	1	0
9		0	EvRE	1	1

Para ello se procederá a realizar las siguientes actividades:

- Las cimentaciones de las estructuras metálicas de soporte de la aparamenta.
- Se construirán canales cables de reducida profundidad que unirán el parque con el edificio de control y las casetas de relés.
- Montaje de las estructuras metálicas de soportes de aparamenta.
- Montaje de la aparamenta correspondientes a las calles equipadas y a sus embarrados de conexión.
- Montaje de embarrados principales y embarrado altos.
- Se modificarán los Sistemas de Control, Telecomunicaciones, Protección y Medida, instalando el BR en el edificio de control.
- Se ampliaran los servicios de c.a y c.c. de Servicios Auxiliares,
- Será modificada la red de tierras así como a la instalación de fuerza y alumbrado.

La disposición física de los elementos del parque responde a lo normalizado por RED ELÉCTRICA para instalaciones de 132 kV, cuyas características principales son:

-	Entre ejes de aparellaje	3.000 mm
-	Entre ejes de conductores tendidos	3.000 mm
-	Anchura de calle	11.000 mm
-	Altura de embarrados de interconexión entre aparatos	5.000 mm
-	Altura de embarrados altos	9.275 mm
_	Altura de embarrados tendidos altos	12.500 mm

2.2 PRESUPUESTO, PLAZO DE EJECUCIÓN Y MANO DE OBRA

La obra adjudicada a contratistas se estima en los siguientes valores

Actividad contratada	Presupuesto (K€)	Jornadas - hombre Previstas	Plazo ejecución (meses)
Obra civil del parque	134	60	2,0
Montaje de la estructura	2,5	30	0,5
Montaje de la aparamenta	49	50	2,0
Montaje en b.t.	2,5	30	0,5
Presupuesto adjudicado	188	Kilo €uros	
Volumen mano de obra estimada	170	Jornadas - hombre	
Punta de trabajadores	8	Trabajadores	

En virtud de estos valores y conforme a lo establecido en el art. 4 del R.D. 1627/1997 para *Obras de construcción o ingeniería civil*, donde se expone que hay obligatoriedad de elaborar un Estudio de Seguridad en los casos en que se superen alguna de las de las circunstancias siguientes:

- Cuando el presupuesto total adjudicado de obra supere 450 k€.
- Cuando el volumen de mano de obra supere 500 jornadas hombre.
- Cuando la duración sea superior a 30 días y haya 20 o más trabajadores.

Se procede a elaborar este Estudio de Seguridad y Salud.

2.3 CONTROL DE ACCESOS

Dado que la situación de la subestación está alejada de núcleos urbanos o zonas de paso, la presencia de personal ajeno a la obra es improbable. A pesar de ello, la parcela se encuentra vallada, por lo que no procede ninguna actuación en este campo.

En el portón de acceso se dispondrán señales informativas de riesgo.

2.4 TRABAJOS PREVIOS, INTERFERENCIAS Y SERVICIOS AFECTADOS

Al realizarse la ampliación en la calle externa al resto del parque no se prevé interferencias con las tareas de explotación del parque, salvo las referentes a las ampliaciones de los embarrados principales y a las pruebas de la protección diferencial de barras, para las cuales se solicitarán cuantos descargos sean pertinentes.

Los trabajos de obra civil no estarán interferidos en su mayor parte con ningún otro, si bien en la fase final interferirán con el inicio de los trabajos de montaje.

Los desplazamientos y las maniobras de trabajadores y maquinaria prevista en obra estarán condicionados por la existencia de elementos en tensión. La actuación en cuanto a las vías de paso autorizado se planificará de forma que no afecte a la instalación en servicio y siempre conforme a las normas indicadas en este documento en los apartados que les afecten.

2.5 UNIDADES CONSTRUCTIVAS QUE COMPONEN LA OBRA

2.5.1 Movimiento de tierras

Consiste en preparar el terreno a fin de disponerlo en condiciones para ubicar los elementos componentes de la subestación.

Básicamente se utilizará maquinaria pesada de explanación y retirada de tierras.

Acopio

Los materiales y equipos a instalar, provenientes de los suministradores se descargarán con medios mecánicos.

Se almacenarán en la campa situada en la propia subestación, en ubicación estable, apartado de las posiciones en construcción y donde no interfiera en el desarrollo posterior de los trabajos.

Drenajes y saneamientos

La red cubrirá el parque de 132 kV. Se realizará con tubo drenante en distribución que no produzca un efluente masivo. La zanja principal alcanzará en su punto más bajo una profundidad que se estima en 1,5 m.

2.5.2 Obra civil

Consiste en la realización de cimentaciones, canales de cables y drenajes.

Se dispondrá de campa de almacenaje de materiales de construcción en zona que no interfiera a los restantes trabajos y a las vías de circulación de vehículos.

La preparación de armaduras de encofrados se ubicará fuera las zonas de paso.

• Cimentaciones de soportes

Las cimentaciones para las estructuras soportantes de la nueva aparamenta se realizarán en dados de hormigón armado.

Canales de cables

Se diseñan para proteger los cables de control y fuerza en su recorrido desde los mandos de cada equipo a las casetas de relés y desde estas últimas hasta el edificio de control. Los canales de cables serán prefabricados de hormigón.

2.5.3 Montaje de estructuras y equipos

En esta fase se instalarán los embarrados altos, las estructuras soportantes de los equipos, los propios equipos y los embarrados de conexión.

Se planificarán las actividades de montaje de forma que no interfieran entre sí y especialmente se cuidará que no afecten a las de obra civil que aún persistan.

Las estructuras metálicas y soportes de la aparamenta se construirán con perfiles normalizados de alma llena.

Trabajos de cableado y trabajos en baja tensión (b.t.)

El tendido de cables de fuerza y control desde los equipos del parque a las casetas de relés se realizará manualmente siguiendo el trazado marcado por los canales.

El montaje de los equipos de control, protecciones, comunicaciones y medidas se realizará simultáneamente a los trabajos de cableado.

Puesta en servicio

Se prevé que la puesta en servicio se realice por fases terminadas conectando eléctricamente la nueva posición / instalación a la red de transporte de electricidad.

Las calles y equipos puestos en servicio se delimitarán y se aislarán, de forma que permitan la ejecución de las posteriores fases de trabajo.

2.6 IDENTIFICACIÓN DE RIESGOS

Las empresas adjudicatarias de las obras han de considerar que la evaluación de los riesgos asociados a cada una de las actividades de construcción de subestaciones supone el análisis previo de:

- Las condiciones generales del trabajo, a las máquinas y equipos que se manejen, a las instalaciones próximas existentes y a los agentes físicos, químicos y biológicos que puedan existir.
- Las características de organización y control del trabajo que cada empresa tiene establecidas, lo que influye en la magnitud de los riesgos.
- La inadecuación de los puestos de trabajo a las características de los trabajadores especialmente sensibles a ciertos riesgos.

Por ello las empresas contratistas adjudicatarias de los trabajos deben disponer de una evaluación de riesgos genérica concerniente a sus trabajos.

No obstante, se prevé que los riesgos que se pueden presentar son:

Situaciones pormenorizadas de riesgo			
Caídas de personas al mismo nivel	Caída por deficiencias en el suelo, por pisar o tropezar con objetos, por existencia de vertidos o líquidos, por superficies en mal estado por condiciones atmosféricas (heladas, nieve, agua, etc.).		
Caídas de personas a distinto nivel	Caída desde escaleras portátiles, desde andamios y plataformas temporales, desniveles, huecos, zanjas, taludes, desde estructuras pórticos.		
Caídas de objetos	Caída por manipulación manual de objetos y herramientas o de elementos manipulados con aparatos elevadores.		

Situaciones pormenorizadas de riesgo			
Situaciones pormenoriza			
Desprendimientos desplomes y derrumbes	Desprendimientos de elementos de montaje fijos, desplome de muros o hundimiento de zanjas o galerías		
Choques y golpes	Choques contra objetos fijos, contra objetos móviles, golpes por herramientas manuales y eléctricas.		
Maquinaria automotriz y vehículos	Atropello a peatones, choques y golpes entre vehículos, vuelco de vehículos y caída de cargas		
Atrapamientos por meca-	Atrapamientos por herramientas manuales, portátiles eléctricos.		
nismos en movimiento	Atrapamientos por mecanismos en movimiento.		
Cortes	Cortes por herramientas portátiles eléctricas o manuales y cortes por objetos superficiales o punzantes.		
Proyecciones	Impacto por fragmentos, partículas sólidas o líquidas.		
Contactos térmicos	Contactos con fluidos o sustancias calientes / fríos.		
	Contacto con proyecciones.		
Contactos químicos	Contacto con sustancias corrosivas, irritantes/ alergizantes u otras.		
Contactos eléctricos	Contactos directos, indirectos o descargas eléctricas		
Arcos eléctricos	Calor, proyecciones o radiaciones no ionizantes.		
Sobreesfuerzos	Esfuerzos al empujar, tirar de objetos.		
	Esfuerzos al levantar, sostener o manipular cargas.		
Explosiones	Máquinas, equipos y botellas de gases.		
Incendios	Acumulación de material combustible.		
	Almacenamiento y trasvase de productos inflamables.		
	Focos de ignición, proyecciones de chispas o partículas calientes.		
Confinamiento	Golpes, choques, cortes o atrapamientos por espacio reducido.		
	Dificultades para rescate.		
Tráfico	Choques entre vehículos o contra objetos fijos		
	Atropello de peatones o en situaciones de trabajo		
	Vuelco de vehículos por accidente de tráfico.		
Agresión de animales	Picadura de insectos, ataque de perros o agresión por otros animales.		
Estrés térmico	Exposición prolongada al calor o al frío		
	Cambios bruscos de temperatura.		
Radiaciones no ionizantes	Exposición a radiación ultravioleta, infrarroja o visible.		
Carga física	Movimientos repetitivos. Carga estática o postural (espacios de trabajo) o dinámica (actividad física). Condiciones climáticas exteriores.		
Carga mental	Distribución de tiempos. Horario de trabajo		

2.6.1 Organización de la seguridad

• Coordinador en materia de seguridad y salud

Las tareas de obra civil y montaje electromecánico si bien estarán programadas en su mayor parte en periodos distintos, pueden que en algún momento interfieran entre sí, por lo que si así fuera sobre la base del Art. 3 del R.D. 1627, RED ELÉCTRICA en su calidad de promotor procederá a nombrar coordinador en materia de seguridad.

Jefes de trabajo de las empresas contratistas

Las personas que ejerzan in situ las funciones de jefe de trabajo, dirigiendo y planificando las actividades de los operarios, garantizarán que los trabajadores conocen los principios de acción preventiva y velarán por su aplicación.

Vigilante de seguridad de la empresa contratista

La empresa contratista reflejará en el Plan de seguridad el nombre de una persona de su organización que actuará como su vigilante de seguridad para los trabajos, bien a tiempo total o compartido, con formación en temas de seguridad (cursillo, prueba, etc.) o con suficiente experiencia para desarrollar este cometido.

Quien actúe como jefe de obra organizará la labor del vigilante y pondrá a su disposición los medios precisos para que pueda desarrollar las funciones preventivas.

2.6.2 Principios generales aplicables durante la ejecución de la obra

De conformidad con la Ley de Prevención de Riesgos Laborales, los principios de la acción preventiva que se recogen en su artículo 15 se aplicarán durante la ejecución de la obra y en particular:

- a) Garantizar que solo los trabajadores que hayan recibido información suficiente y adecuada pueden acceder a las zonas de riesgo grave o específico.
- b) Dar las debidas instrucciones a los empleados.
- c) El mantenimiento de la obra en buen estado de orden y limpieza.
- d) La manipulación de los distintos materiales y la utilización de los medios auxiliares.
- e) El mantenimiento de los medios y dispositivos necesarios para la ejecución de la obra.
- f) La delimitación y el acondicionamiento de las zonas de trabajo.
- g) La recogida de los materiales peligrosos utilizados.
- h) La adaptación, en función de la evolución de obra, del periodo de tiempo efectivo que habrá de dedicarse a los distintos trabajos o fases de trabajo.
- i) La cooperación entre RED ELÉCTRICA y el contratista.

2.6.3 Formación

El personal de la empresa contratista que sea habitual en estos trabajos debe estar instruido en seguridad. No obstante, en las fechas inmediatas a la incorporación recibirá información específica acorde al trabajo que va a realizar

La empresa contratista garantizará que el personal de sus empresas subcontratadas será informado del contenido del Plan de seguridad.

Los operarios que realicen trabajos con riesgo eléctrico tendrán la categoría de "personal autorizado o cualificado" para las funciones que le asigna el R.D. 614/2001.

2.6.4 Medicina preventiva

La empresa contratista queda obligada a aportar a la obra trabajadores con reconocimiento médico realizado. Si como consecuencia de este reconocimiento fuera aconsejable el cambio de puesto de trabajo, la empresa contratista queda obligada a realizarlo.

En cualquier momento RED ELÉCTRICA podrá solicitar certificados de estos reconocimientos.

2.6.5 Medios de protección

Antes del inicio de los trabajos todo el material de seguridad estará disponible en la obra, tanto el de asignación personal como el de utilización colectiva.

Así mismo, todos los equipos de protección individual se ajustarán a lo indicado en el R.D. 773/1997 sobre Disposiciones mínimas de seguridad y salud relativas a la utilización por los trabajadores de equipos de protección individual.

2.7 LOCALES DE DESCANSO Y SERVICIOS HIGIÉNICOS

A tenor de lo establecido en el R.D. 486/1997 sobre *Disposiciones mínimas de seguridad y salud en los lugares de trabajo* y particularmente en su Anexo V, el contratista dispondrá de los locales y servicios higiénicos necesarios

Si se utilizasen instalaciones permanentes existentes en la instalación, no será preciso dotar a la obra de instalaciones temporales. Esta circunstancia será reflejada en el Plan de Seguridad.

2.8 DISPOSICIONES DE EMERGENCIA

2.8.1 Vías de evacuación

Dadas las características de la obra, trabajos en exterior, casetas y edificios de pequeñas dimensiones no es necesario la definición de vías o salidas de emergencia para una posible evacuación.

Si en la construcción del edificio de control estima la presencia de más de 20 trabajadores, se realizará un plano con las distintas vías de evacuación que serán definidas teniendo en cuenta el número de los posibles usuarios, que deberá instalarse en un lugar visible a la entrada del edificio. Además, se instalará señalización indicando las diferentes vías de emergencia con la mayor prontitud posible.

Cuando sea necesario, la decisión de la evacuación del lugar trabajo será tomada por el coordinador de seguridad, y en el caso de que no esté presente, del supervisor de RED ELÉCTRICA. Siendo el punto de reunión el portón principal de entrada a la subestación.

Dado el limitado número de personas que se prevén van a coincidir en la obra y la no existencia de recintos cerrados no se considera necesario establecer equipos de evacuación ni realizar simulacros al respecto.

2.8.2 Iluminación

Al tratarse de trabajos que se realizarán a la intemperie y en horario diurno, no será necesaria la instalación de alumbrado.

En el caso, que se realicen trabajos en horario nocturno, se instalará un sistema de alumbrado adecuado al trabajo que se va a realizar y que incluirá las vías de acceso los puntos de trabajo. Complementando al sistema de alumbrado se dispondrá de una alternativa de emergencia de suficiente intensidad (linternas o cualquier otro sistema portátil o fijo).

Instalaciones de suministro y reparto de energía

Se instalará un grupo electrógeno para el suministro de la energía eléctrica.

El suministro eléctrico se tomará de la red existente

Las instalaciones de suministro y reparto de energía en la obra deberán instalarse y utilizarse de manera que no entrañen peligro de incendio ni de explosión y de modo que las personas estén debidamente protegidas contra riesgos de electrocución por contacto directo o indirecto.

Cuando se trate de instalaciones eléctricas el acceso a las partes activas de las mismas quedará limitado a trabajadores autorizados o cualificados.

2.8.3 Ventilación

No se prevé la necesidad de realizar controles de ventilación dado el tipo de obra.

En los trabajos en galerías, centros subterráneos, etc. Previo al acceso al recinto y durante su permanencia en el mismo, se procederá a las determinaciones higiénicas oportunas de la atmósfera confinada que posibiliten conocer si los valores de oxígeno son suficientes o si los niveles de contaminantes tóxicos o inflamables están por encima de los niveles máximos permitidos.

Los trabajos a realizar en este tipo de recintos deberán en todo momento tener vigilancia desde el exterior, con una comunicación continua entre los trabajadores que permanezcan en el interior y exterior del recinto confinado. Tomándose todas las debidas precauciones para que se le pueda prestar auxilio eficaz e inmediato.

Dado que será necesario utilizar herramientas o máquinas que producen gases o vapores que reducen de forma peligrosa la concentración de oxígeno (<18%), y no está asegurada una buena renovación del aire existente en el lugar de trabajo, se instalará un sistema de ventilación de aire limpio.

Al preverse la existencia de contaminantes inflamables, las herramientas a utilizar serán compatibles con el riesgo detectado (herramientas antideflagrantes).

2.8.4 Ambientes nocivos y factores atmosféricos

Dado que se trata de un trabajo a la intemperie, la planificación de tareas que requieran un consumo metabólico alto se planificará para que no coincidan con los periodos de temperatura extremos.

En caso de tormenta eléctrica se suspenderán los trabajos.

Los trabajadores no deberán estar expuestos a niveles sonoros nocivos ni a factores externos nocivos (gases, vapores, polvo...), sin la protección adecuada.

2.8.5 Detección y lucha contra incendios

No se prevé en la obra la existencia de carga térmica elevada, para facilitarlo se mantendrán adecuadas condiciones de orden y limpieza.

La obra dispondrá de extintores la cantidad suficiente. Los extintores deberán situarse en lugares de fácil acceso.

No existirán bocas de extinción de incendios al no disponer el recinto de acometida de aguas.

El sistema de detección de incendios en casetas y edificio se instalará en cuanto el avance de la obra lo permita.

2.8.6 Primeros auxilios

Todo el personal debe conocer que el número de solicitud de ayuda de primeros auxilios es el 112. La Administración dispondrá ayuda técnica o sanitaria que se solicite en dicho número.

La empresa contratista dispondrá de un botiquín de obra para prestar primero auxilios. Se podrá hacer uso de los medios de primeros auxilios (camilla, elementos de cura, etc.) que exista en la subestación. Asimismo, deberá estar disponible en la obra un vehículo, para evacuar a un posible accidentado.

El contratista expondrá, para conocimiento de todos sus trabajadores la dirección de los centros de asistencia más próximos.

2.9 PLAN DE SEGURIDAD

El Plan de Seguridad que elabore la empresa adjudicataria de los trabajos debe establecer su forma particular de ejecutarlos, debe ser un documento ajustado a las situaciones de riesgos previsibles en la obra.

El Plan de Seguridad una vez aprobado debe ser el documento aplicable en obra, para lo cual debe permanecer en poder del jefe de trabajo y del coordinador de seguridad.

CAPÍTULO 3. PLIEGO DE CONDICIONES

3.1 NORMATIVA LEGAL DE APLICACIÓN

La ejecución de la obra, objeto del Estudio de Seguridad, estará regulada por la normativa que a continuación se cita, siendo de obligado cumplimiento para las partes implicadas.

- Ley 31/95 de 8 de noviembre de Prevención de Riesgos Laborales
- Ley 54/03 de 12 de diciembre de Reforma del Marco Normativo de la Prevención de Riesgos Laborales.
- R.D. 1627/97 de 24 de octubre sobre Disposiciones mínimas de seguridad y salud en las obras de construcción.
- R.D. 171/04 de 30 enero, por el que desarrolla el Art. 24 de la Ley 31/95, de Prevención de Riesgos Laborales, en materia de coordinación de actividades empresariales.
- R.D. 614/2001 de 8 de junio sobre Disposiciones mínimas para la protección de la salud y seguridad de los trabajadores frente al riesgo eléctrico.
- R.D. 486/97 de 14 de abril sobre Disposiciones mínimas de seguridad y salud en los lugares de trabajo.
- R.D. 487/97 de 14 de abril sobre Manipulación manual de cargas.
- R.D. 773/97 de 30 de mayo sobre Utilización por los trabajadores de equipos de protección individual.
- R.D. 337/2014, de 9 de mayo, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23.

3.2 NORMATIVA INTERNA DE RED ELÉCTRICA

La ejecución de la Obra queda igualmente condicionada por la normativa de RED ELÉCTRICA que se referencia, a efectos de aspectos más generales que aplican a la obra.

- TM-001. Organización de la seguridad en los trabajos en instalaciones de AT.
- IM-002. Medidas de seguridad en instalaciones de AT. para trabajos sin tensión.
- IM-013. Medidas de seguridad en trabajos en instalaciones de BT.
- AM-004. Aplicación de la línea de seguridad para trabajos en alturas.
- AM-005. Trabajos de manutención manual y mecánica.
- IC-003. Subcontratación por proveedores de RED ELÉCTRICA a terceros.

CAPÍTULO 4. PRESUPUESTO DE SEGURIDAD

Sub Dragonera SE. Ampliación EvRe

Duración del trabajo: (meses) 7
Operarios previstos: 10

Material de asignación personal							
Nº de orden	Concepto	Dotación anual por operario	Unidades equiv.	Precio Udad (€uros)	Coste total (€uros)		
1	Casco de protección	2	12	5,11	61		
2	Botas de seguridad	4	23	46,58	1.071		
3	Botas de agua.	2	12	38,43	461		
4	Guantes de trabajo.	36	210	4,38	920		
5	Arnés de cintura o completo	0,5	3	146,12	438		
6	Dispositivos anticaida y compl.	0,5	3	90,29	271		
7	Trajes impermeables.	2	12	28,33	340		
8	Gafas antiimpactos.	6	35	4,78	167		
9	Pantalla de protección facial	2	12	9,44	113		
10	Pantallas y gafas para soldadura	1	6	7,81	47		
11	Mandiles, polaina, guantes soldadura	1	6	26,38	158		
12	Ropa de trabajo	2	12	69,20	830		
				Coste Parcial	4.877		

Material de asignación colectiva

Nº de orden	Concepto	Dotación anual	Unidades equivalente s	Precio Udad (€uros)	Coste total (€uros)
1	Cuerda 100m Línea de Seguridad	4	2	107,94	216
2	Complementos uso Lín. Seg.	10	6	120,05	720
3	Malla perforada de delimitación	1.000	583	0,49	286
4	Cinta o cadena de delimitación	1000	583	0,04	23
5	Señales de obligación e informativas	60	35	3,01	105
6	Botiquín primeros auxilios	2	1	18,06	18
7	Tablero o camilla evac. accidentados	1	1	253,80	254
8	Extintores	4	2	30,80	62
				Coste Parcial	1.684

Tomación - modiona proventiva						
Nº de	Concepto	Unidades	Precio Udad	Coste total		
orden	Concopio		(€uros)	(€uros)		
1	Charla informativa seg. y prim.auxilios	10	34,00	340		
2	Reconocimientos médicos	10	30,50	305		
			Coste Parcial	645		

Total 7.206

Asciende este Presupuesto de Seguridad a la cantidad de SIETE MIL DOSCIENTOS SEIS EUROS.

Madrid, mayo de 2022 El Ingeniero industrial

David González Jouanneau

Jefe del Departamento de Ingeniería de Subestaciones

Red Eléctrica de España, S.A.U.

PROYECTO TÉCNICO ADMINISTRATIVO

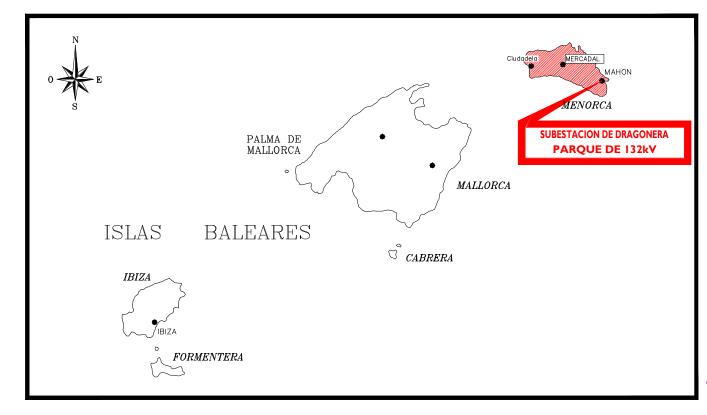
AMPLIACIÓN DE LA SUBESTACIÓN DRAGONERA 132 kV. NUEVA POSICIÓN EVRE

DOCUMENTO 3
PLANOS

Dirección de Ingeniería y Construcción Dpto. Ingeniería de Subestaciones

ÍNDICE DE PLANOS

	N° DE PLANO
1. Situación y emplazamiento	P-DRAB1000
2. Esquema unifilar simplificado. Parque de 132kV (actual y futuro)	P-DRAA3003
3. Implantación general (futuro)	P-DRA_IMPLANTACION
4. Planta general (actual y futuro)	P-DRAE1000
5. Secciones generales. Parque de 132kV (futuro)	P-DRA_SECCIÓN
6. Planta fundaciones y canales (actual y futuro)	P-DRAC5000
7. Planta general de red de tierras (actual y futuro)	P-DRAF1000
8. Sala de Control (actual y futuro)	P-DRAD1000
9. Relación de Bienes y Derechos	P-DRA_RBD

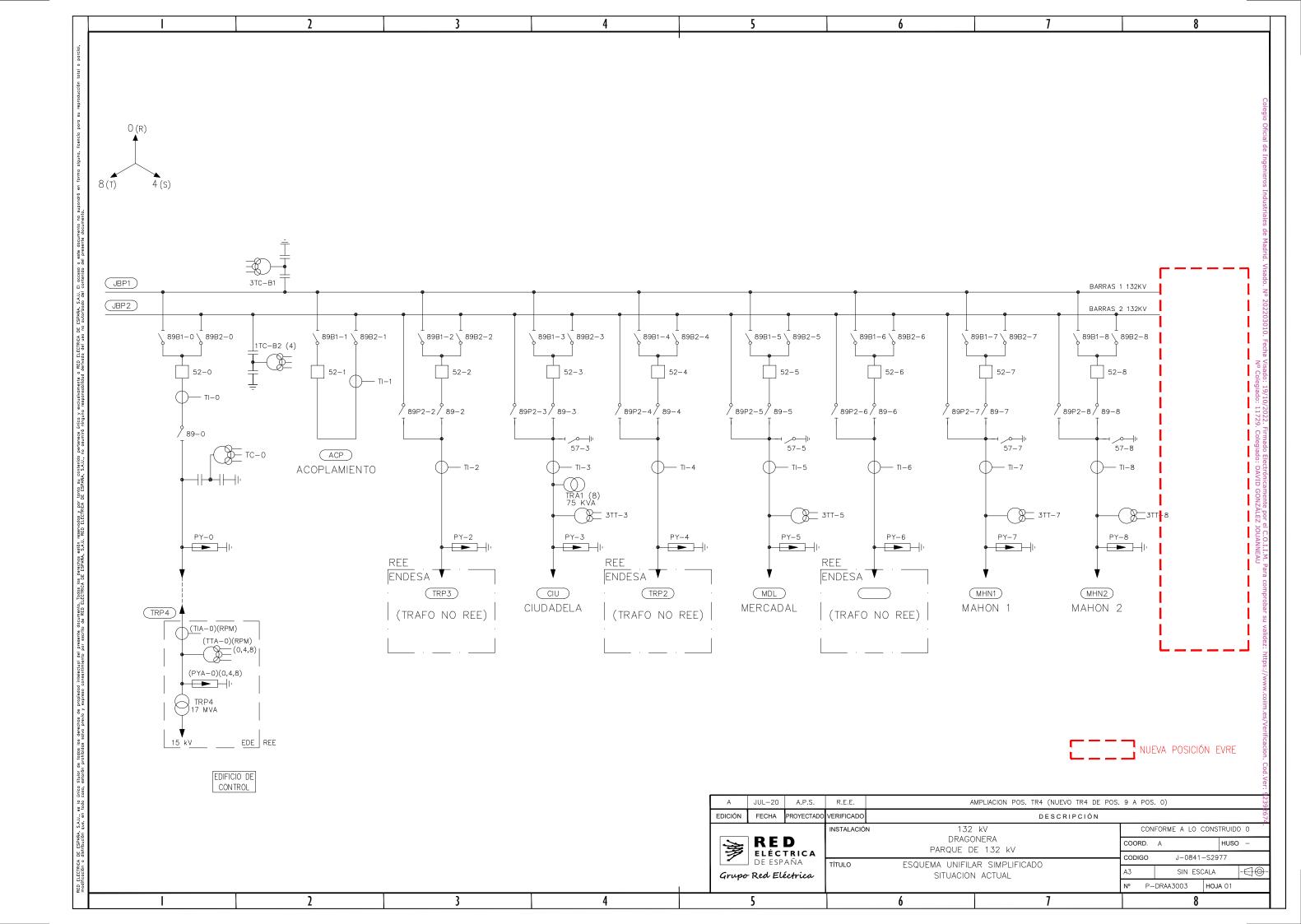

Madrid, mayo de 2022 El Ingeniero industrial

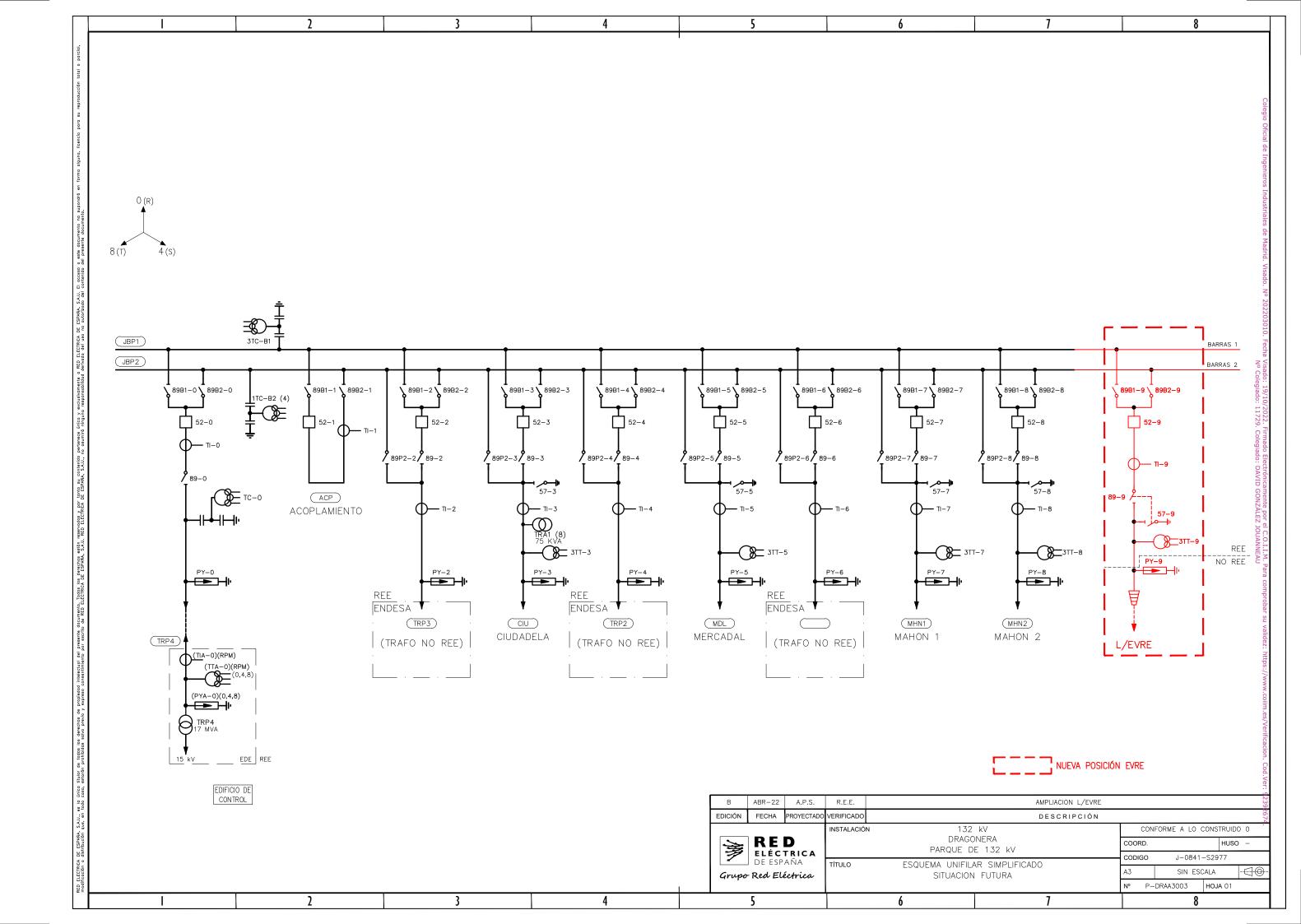
David González Jouanneau

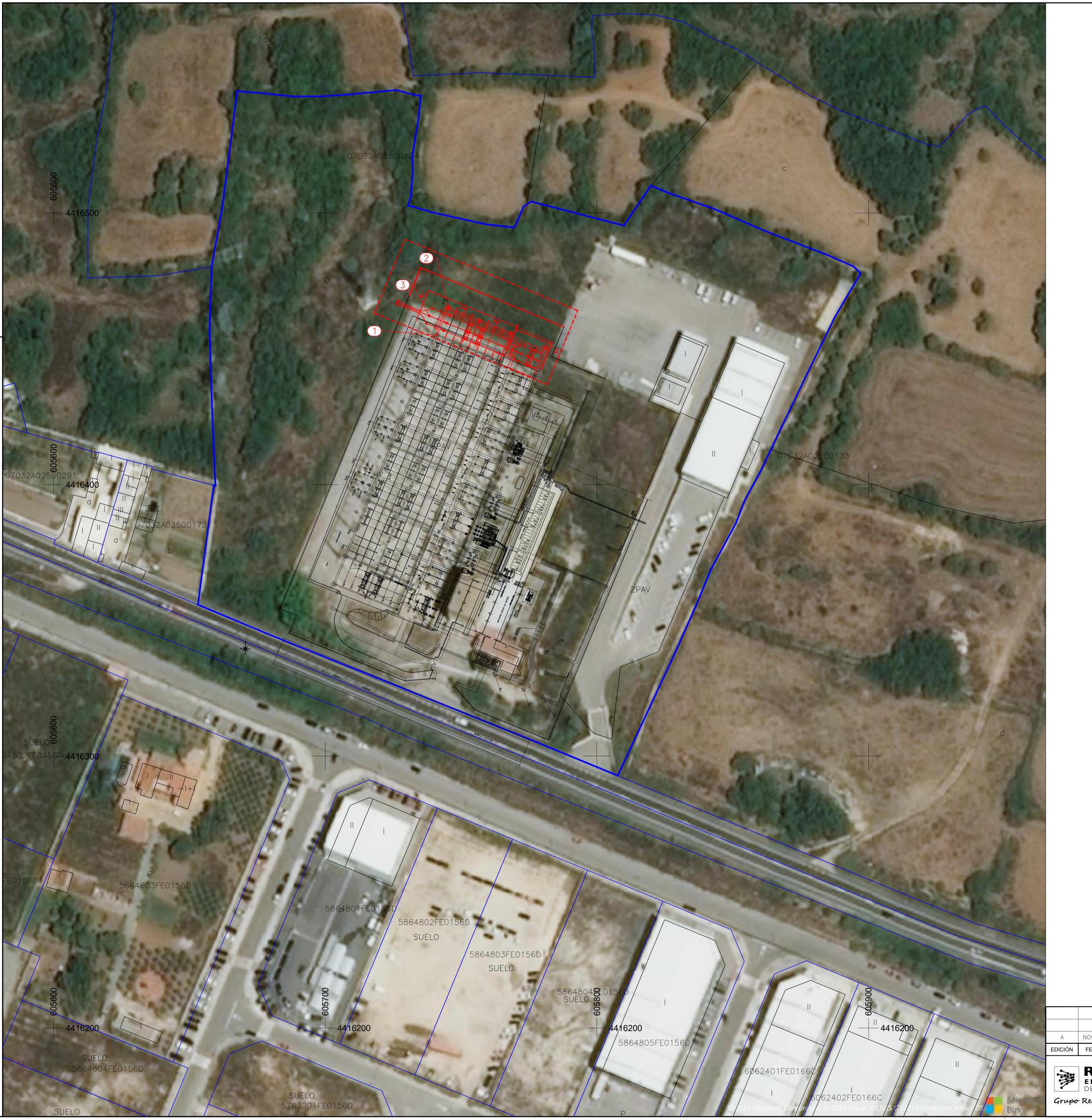
Jefe del Departamento de Ingeniería de Subestaciones

Red Eléctrica de España, S.A.U.

No Hort de Sant Joun Estació Naval Pla dex Vergers Port de Mahón Moll de Ponent Illa SUBESTACION DRAGONERA Moll de Lleva Mahón óligono Industrial de Mahón Urbanizáció, dines de Mallburger Tanques de Malburger Α 03-21 J.M.A. R.T.L. J.M.A. CONFORME A LO CONSTRUIDO (J-0841-S2977) J.D.C.E. APROBADO POR R.E.E REVISION FECHA PROYECT. DIBUJADO COMPROB. MODIFICACION **W**aditel RED SUBESTACION DE DRAGONERA **ELÉCTRICA** PARQUE DE 132 kV Νº de españa FECHA NOMBRE TITULO FORMATO: DIN A3 PROYECTADO 12-11 D.P.F. ESCALA: PLANO DE SITUACION Y EMPLAZAMIENTO A.R.S. DIBUJADO SITUACION ACTUAL P-DRAB1000 COMPROBADO APROBADO POR R.E.E. HOJA 01 SIGUE


PLANO DE SITUACION

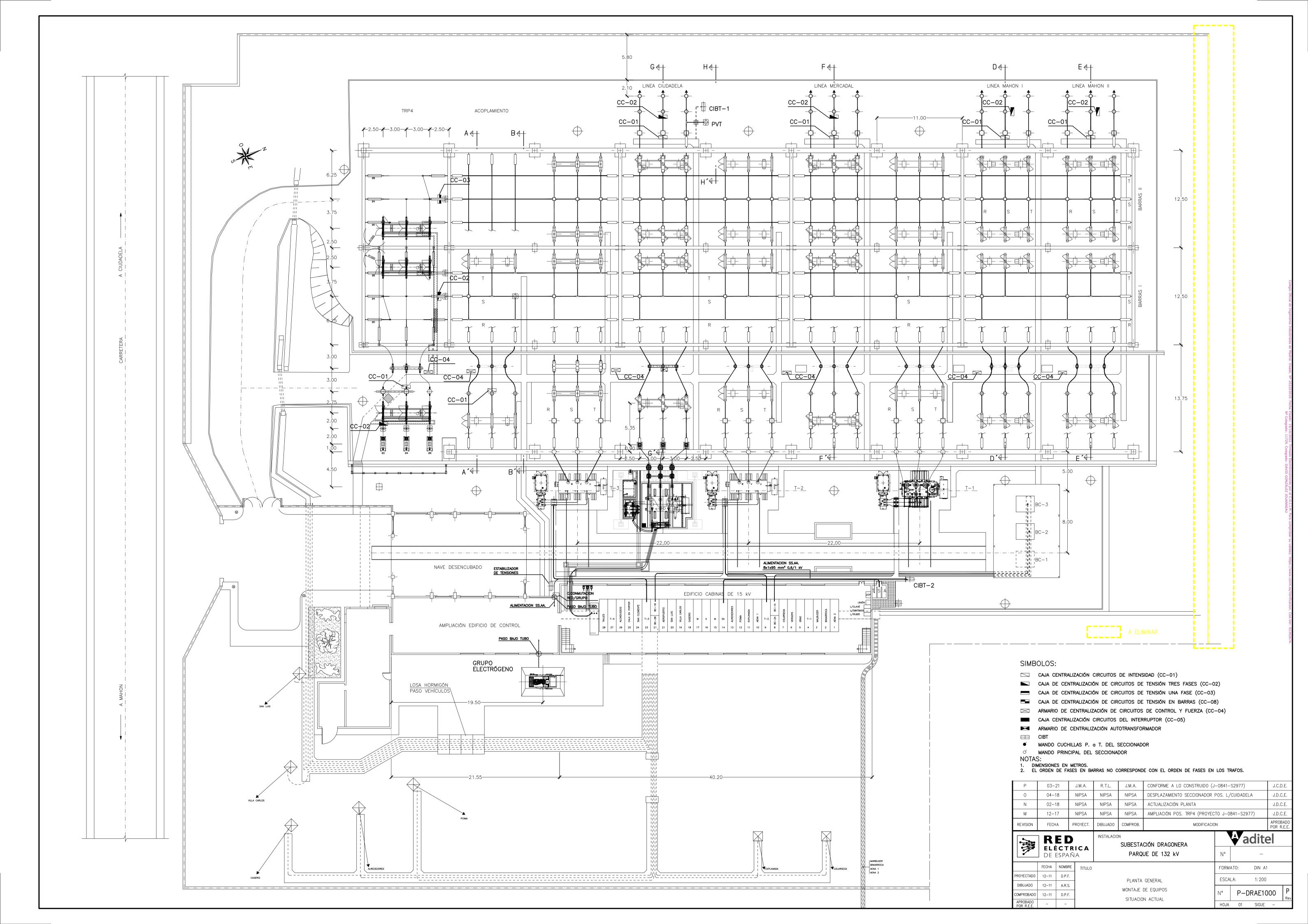


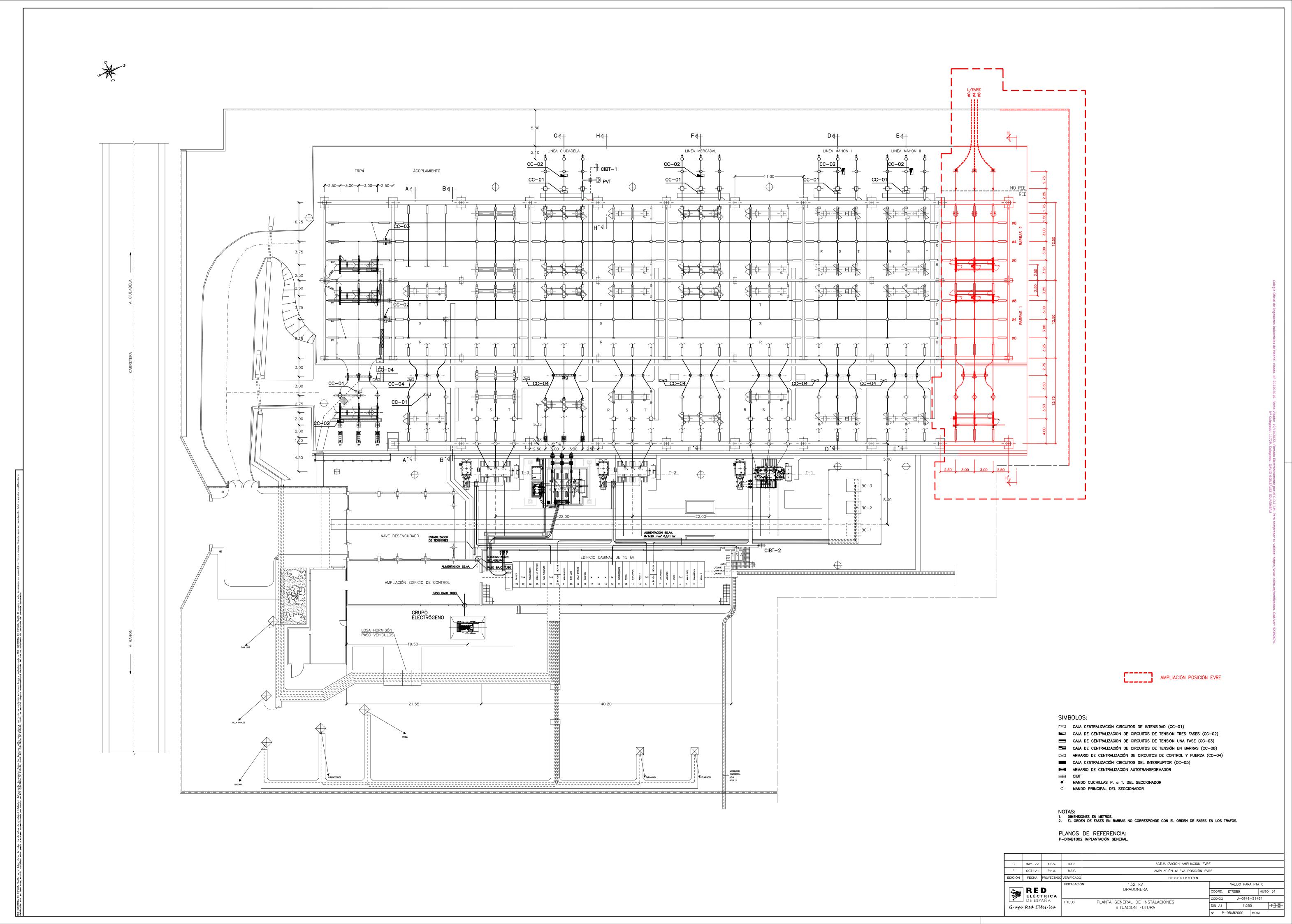

EMPLAZAMIENTO:

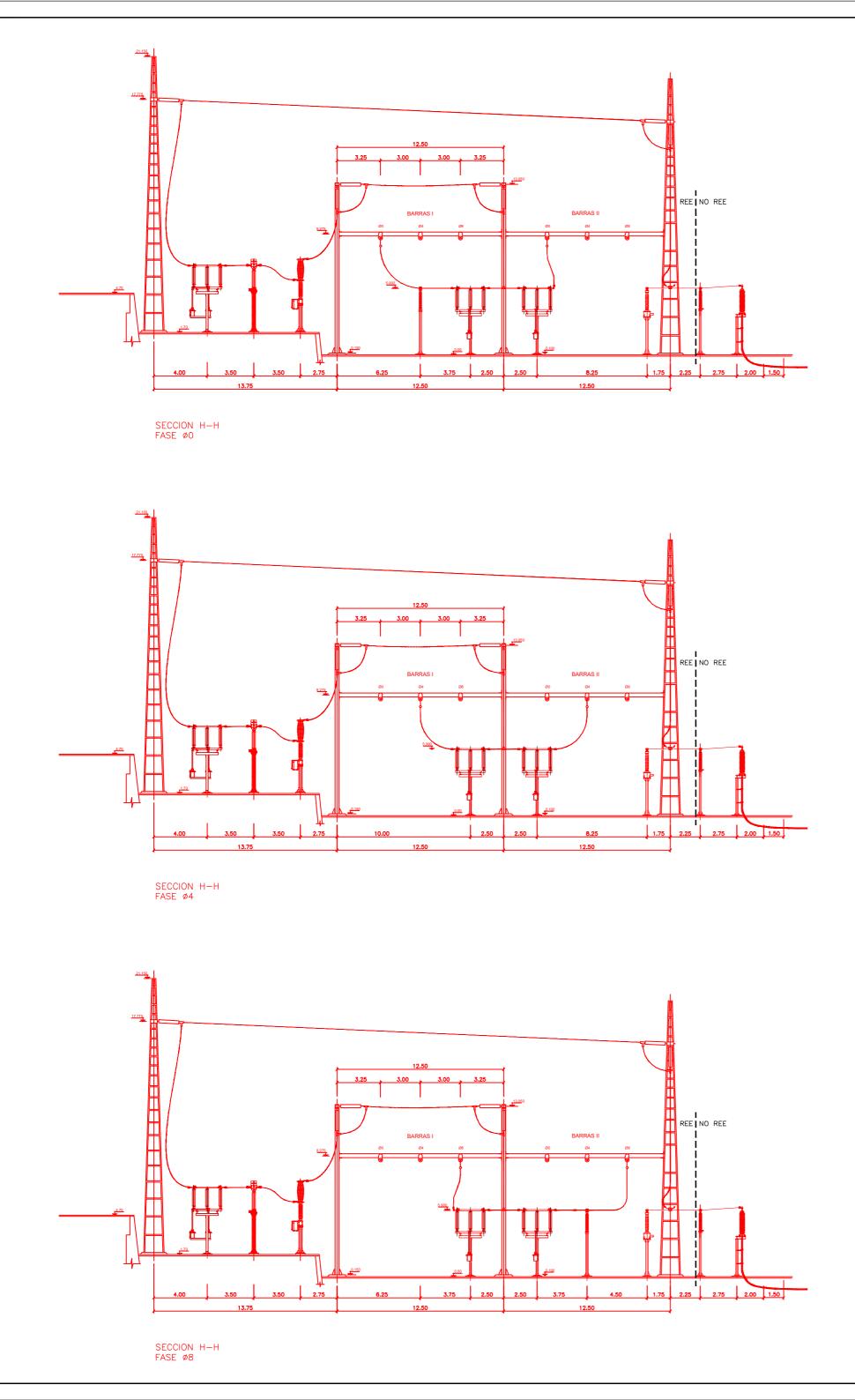
TERMINO MUNICIPAL DE MAHON, PROVINCIA DE LAS BALEARES, ISLA DE MENORCA DE LA COMUNIDAD AUTONOMA DE BALEARES.

								<
								7: 9
								2392
В	ABR-22	A.M.G.S.	R.E.E.	AMPLIACION L/EVRE				
EDICIÓN	FECHA	PROYECTADO	VERIFICADO	DESCRIPCIÓN				
	RED		INSTALACIÓ	102		VÁLIDO PARA	PTA 0	
				DRAGONERA		D.	HUS	0
RED ELÉCTRICA DE ESPAÑA Grupo Red Eléctrica					CODIGO			
		IIIOLO	SITUACION FUTURA	A3 SIN ESCALA		ALA		
				Nº	P-DRAB1000	HOJA		

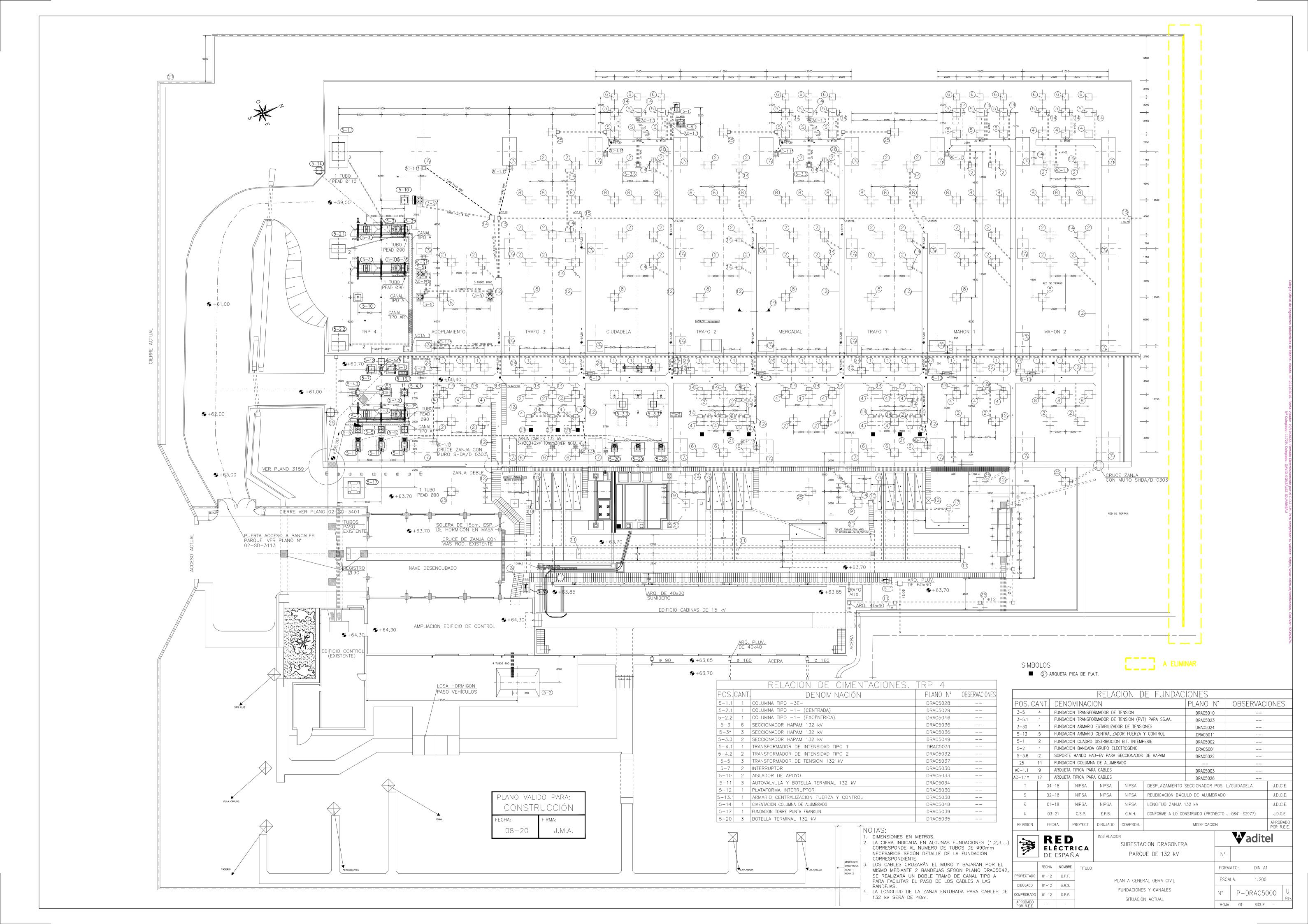
	NADAS DE LO RS89 UTM HU	
PUNTO	Х	Y
1	605741.05	4416455.03
2	605745.24	4416465.20
3	605738.26	4416462.13

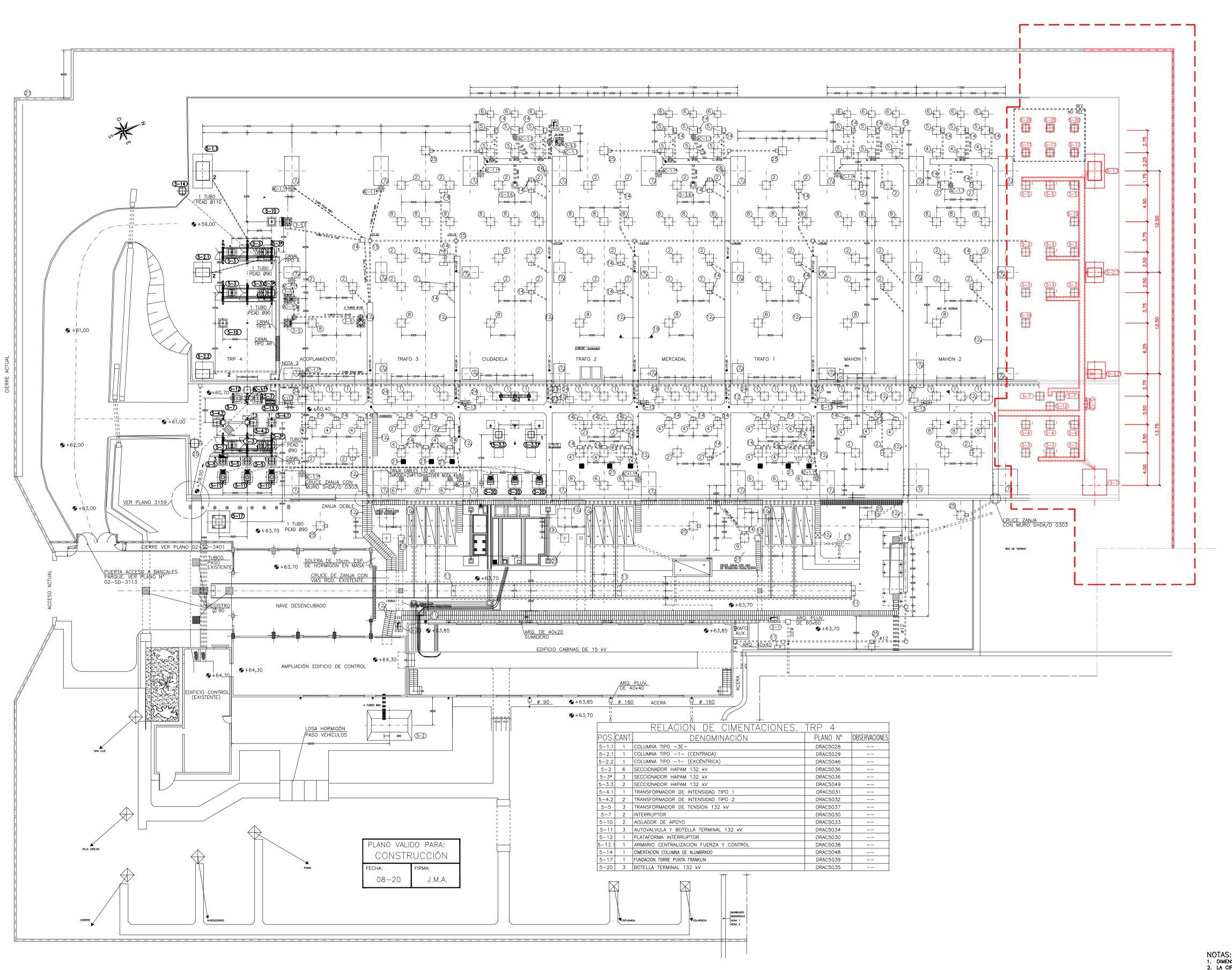

NOTAS.-1 COORDENADAS APROXIMADAS EXPRESADAS EN METROS


PLANOS DE REFERENCIA.-


P-DRAB2001 PLANTA GENERAL.

AMPLIACIÓN POSICIÓN EVRE


5704											
100	А	NOV-20	R.H.A.	R.E.E.	AMPLIACIÓN NUEVA POSICIÓN EVF	₹E					
	EDICIÓN	FECHA	PROYECTADO	VERIFICADO	DESCRIPCIÓN						
				INSTALACIÓ	102 111						
	等	RE			DRAGONERA	COORD.	ETRS89	HUSC) 31		
	-	DE ESP	TRICA Aña	TÍT!!! O		CODIGO	IGO J-0848-S1				
Section 18	and the second s		Grupo Red Eléctrica		IIIOLO				1:1000)	
19	•••		••		SITUACION FUTURA	Nº P-	-DRAB_IMPLAN	HOJA			



F	0CT-21	R.H.A.	R.E.E.	AMPLIACIÓN NUEVA	POSICIÓN EVRE								
EDICIÓN	FECHA	PROYECTADO	VERIFICADO	DESCRIF	PCIÓN								
	BIGION TEGIA			'	INSTALACIÓN		INSTALACIÓN	132 kV		VALIDO PARA PTA O			
**	RE			DRAGONERA	CC	OORD.	ETRS89	HUS	0 31				
	DE ESP	TRICA AÑA		OFOOLON, OFNERN	CO	ODIGO	J-0848-	S1421					
Grupo	Grupo Red Eléctrica	- SECCION GENERA		SECCION GENERAL POSICION L/EVRE	DI	N A2	1:250						
54.05/20	grape Rea Eccorrac			SITUACION FUTURA		P-	DRABSECCION	HOJA					

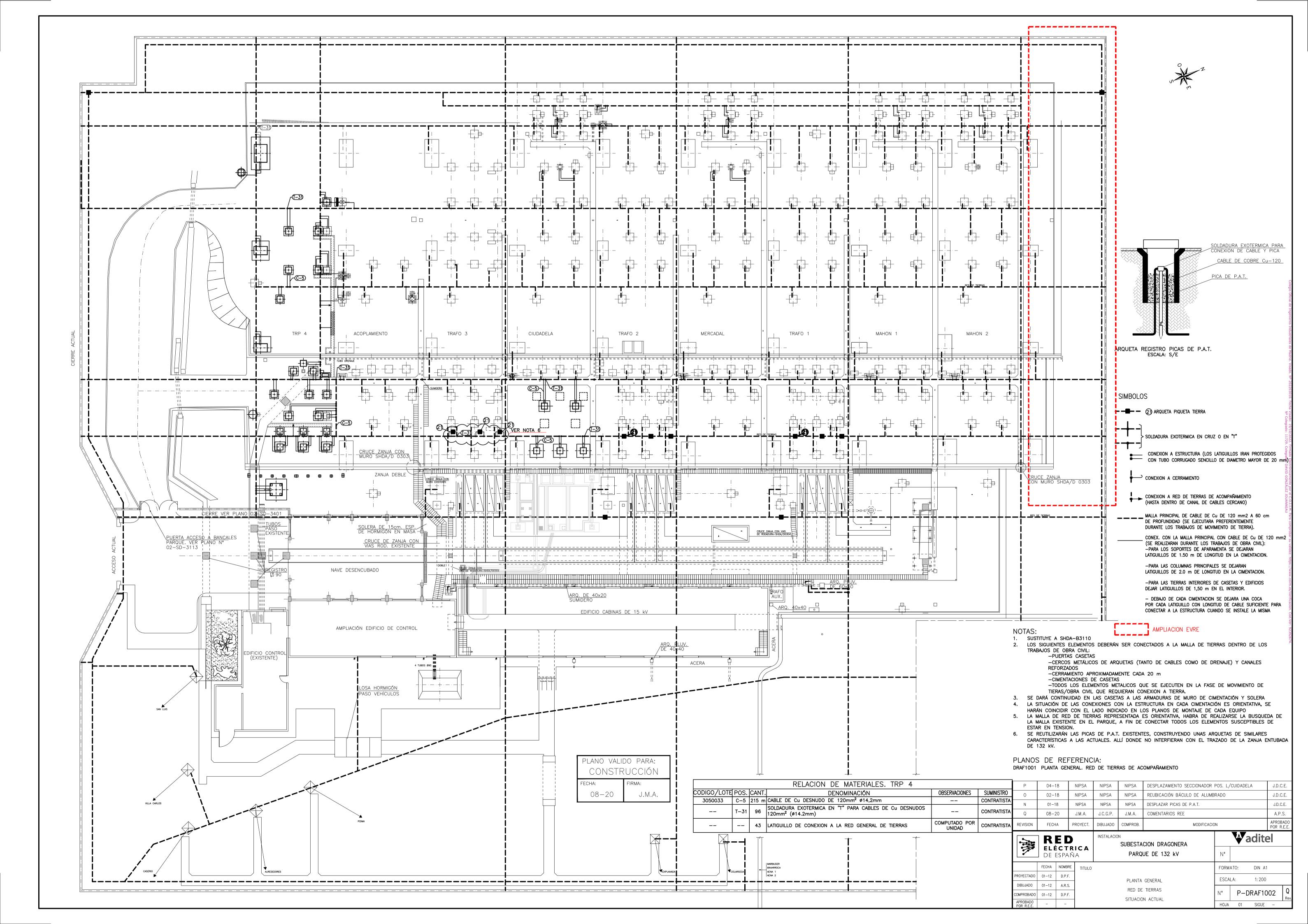
ARQUETA PICA DE P.A.T.

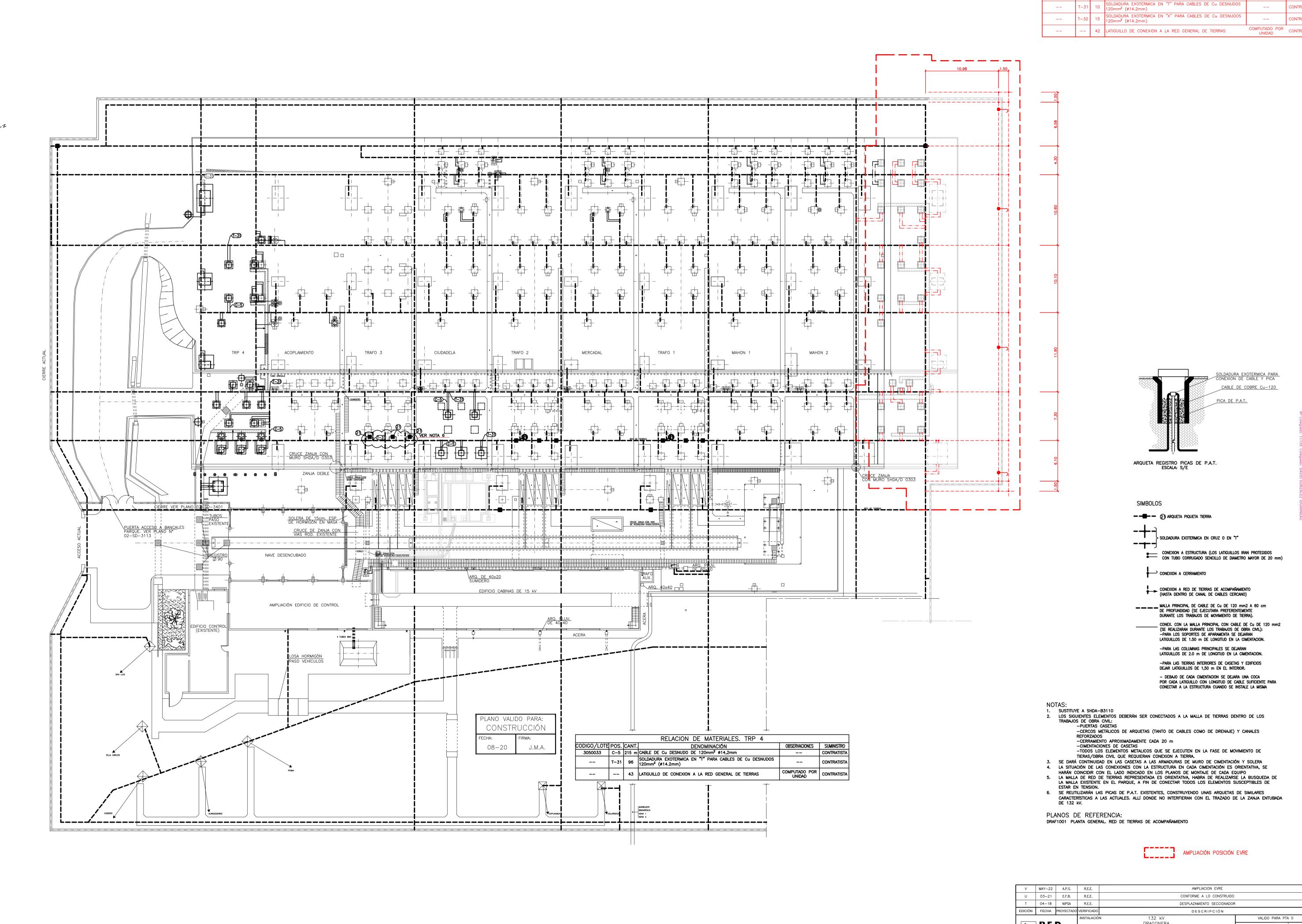
	RELACION DE FUNDACIONES									
POS.	CANT.	DENOMINACION	PLANO N°	OBSERVACIONES						
3–5	4	FUNDACION TRANSFORMADOR DE TENSION	DRAC5010							
3–5.1	1	FUNDACION TRANSFORMADOR DE TENSION (PVT) PARA SS.AA.	DRAC5023							
3-30	1	FUNDACION ARMARIO ESTABILIZADOR DE TENSIONES	DRAC5024							
5–13	5	FUNDACION ARMARIO CENTRALIZADOR FUERZA Y CONTROL	DRAC5011							
5–1	2	FUNDACION CUADRO DISTRIBUCION B.T. INTEMPERIE	DRAC5002							
5–2	1	FUNDACION BANCADA GRUPO ELECTROGENO	DRAC5001							
5-3.6	2	SOPORTE MANDO HAD-EV PARA SECCIONADOR DE HAPAM	DRAC5022							
25	11	FUNDACION COLUMNA DE ALUMBRADO								
\C-1.1	9	ARQUETA TIPICA PARA CABLES	DRAC5003							
C-1.1*	12	ARQUETA TIPICA PARA CABLES	DRAC5026							

		RELACION DE CIMENTACIONES.	L/EVRE	
POS.	CANT.	DENOMINACIÓN	PLANO N°	OBSERVACIONES
5-1	1	COLUMNA PORTICO		
5-1.1	1	COLUMNA TIPO -3E-	DRAC5028	
5-2.1	1	COLUMNA TIPO -1- (CENTRADA)	DRAC5029	
5-2.2	1	COLUMNA TIPO -1- (EXCÉNTRICA)	DRAC5046	
5-3	9	SECCIONADOR ROTATIVO 132 KV	DRAC5036	
5-4	3	TRANSFORMADOR DE INTENSIDAD	DRAC5031	
5-5	3	TRANSFORMADOR DE TENSION 132 kV	DRAC5037	
5-7	2	INTERRUPTOR	DRAC5030	
5-10	2	AISLADOR DE APOYO	DRAC5033	
5-11	3	AUTOVALVULA 132 kV	DRAC5034	
5-12	1	PLATAFORMA INTERRUPTOR	DRAC5030	Golegio
5-13	1	ARMARIO CENTRALIZACION FUERZA Y CONTROL	DRAC5038	
5-14	1	CIMENTACION COLUMNA DE ALUMBRADO	DRAC5048	Ofic
5-20	3	BOTELLA TERMINAL 132 kV	DRAC5035	a

AMPLIACIÓN POSICIÓN EVRE

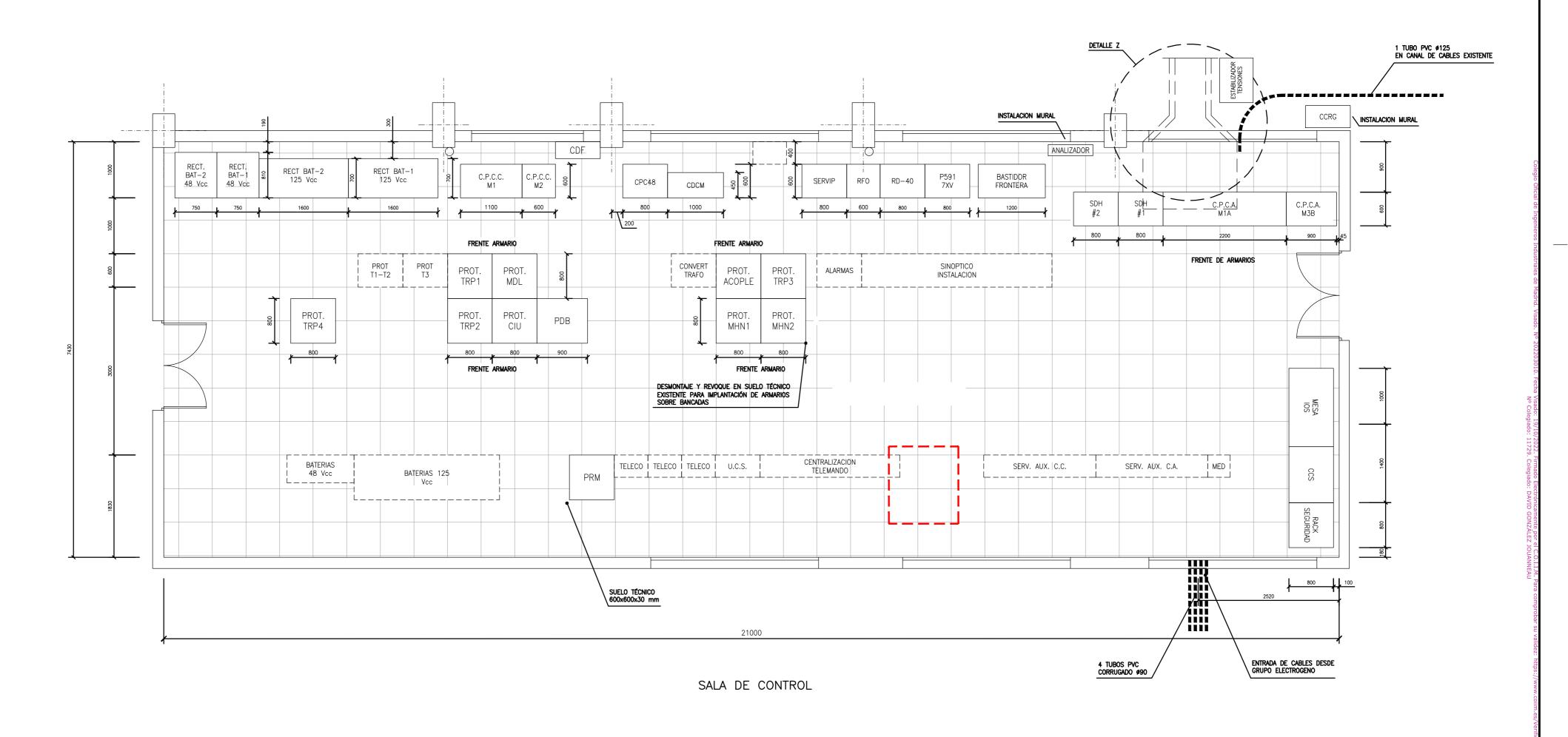
NOTAS:


1. DIMENSIONES EN METROS.

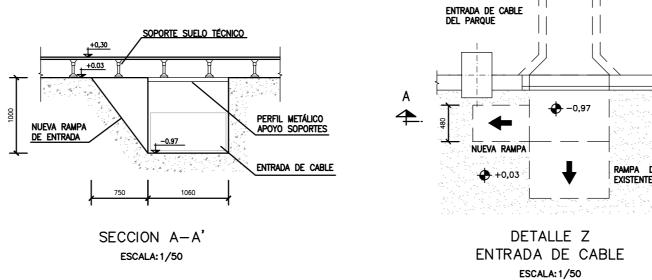

2. LA CIFRA INDICADA EN ALGUNAS FUNDACIONES (1,2,3,...) CORRESPONDE AL NUMERO DE TUBOS DE Ø90mm NECESARIOS SEGÚN DETALLE DE LA FUNDACION CORRESPONDIENTE.

3. LOS CABLES CRUZARÁN EL MURO Y BAJARAN POR EL MISMO MEDIANTE 2 BANDEJAS SEGÚN PLANO DRAC5042, SE REALIZARÁ UN DOBLE TRAMO DE CANAL TIPO A PARA FACILITAR EL PASO DE LOS CABLES A LAS BANDEJAS.

4. LA LONGITUD DE LA ZANJA ENTUBADA PARA CABLES DE 132 kV SERÁ DE 40m.


grupe Rea Eccercas			SITUACIONI FUTURA	NO C	DRACEGGG	по ту			
Grupo	RED ELÉCTRICA DE ESPAÑA Grupo Red Eléctrica		IIIOLO	FUNDACIONES Y CANALES	DIN A1	1:25	0	40	
			TÍTULO	PLANTA GENERAL DE OBRA CIVIL	CODIGO	CODIGO J-0848-S142		<u>'</u> 1	
1				DRAGONERA		ETRS89	HUS	0 31	
					INSTALACIÓN	132 kV		VALIDO PARA PTA O	
EDICIÓN	FECHA	PROYECTADO	VERIFICADO	DESCRIPCIÓN					
Т	04-18	NIPSA	R.E.E.	DESPLAZAMIENTO SECCIONADOR					
U	03-21	E.F.B.	R.E.E.	CONFORME A LO CO	CONFORME A LO CONSTRUIDO				
٧	MAY-22	A.P.S.	R.E.E.	AMPLIACION E	VRE				

RED ELÉCTRICA DE ESPAÑIA DRAGONERA HUSO 31 COORD. ETRS89 PLANTA GENERAL DE OBRA CIVIL 1:250 FUNDACIONES Y CANALES Grupo Red Eléctrica SITUACION FUTURA N° P-DRAC5000 HOJA


RELACION DE MATERIALES. L/EVRE

NOTAS:

- 1. SE SOLDARAN EN OBRA A LA BANCADA PERFILES L40.4 SEGUN PLANOS DE DETALLE (DRAG3000), EN LOS
- LATERALES DONDE VAYA FALSO SUELO, PARA APOYO DEL MISMO, DURANTE SU INSTALÀCION.

 2. SE MANTENDRÁ SIEMPRE UN PASILLO DE SERVICIO MÍNIMO DE 900 mm ENTRE ARMARIOS.

CONFORME A LO CONSTRUIDO (J-0841-S2977)

AMPLIACIÓN POS. TRP4 (PROYECTO J-0841-S2977)

J.D.C.E.

J.D.C.E.

HOJA 01 SIGUE -

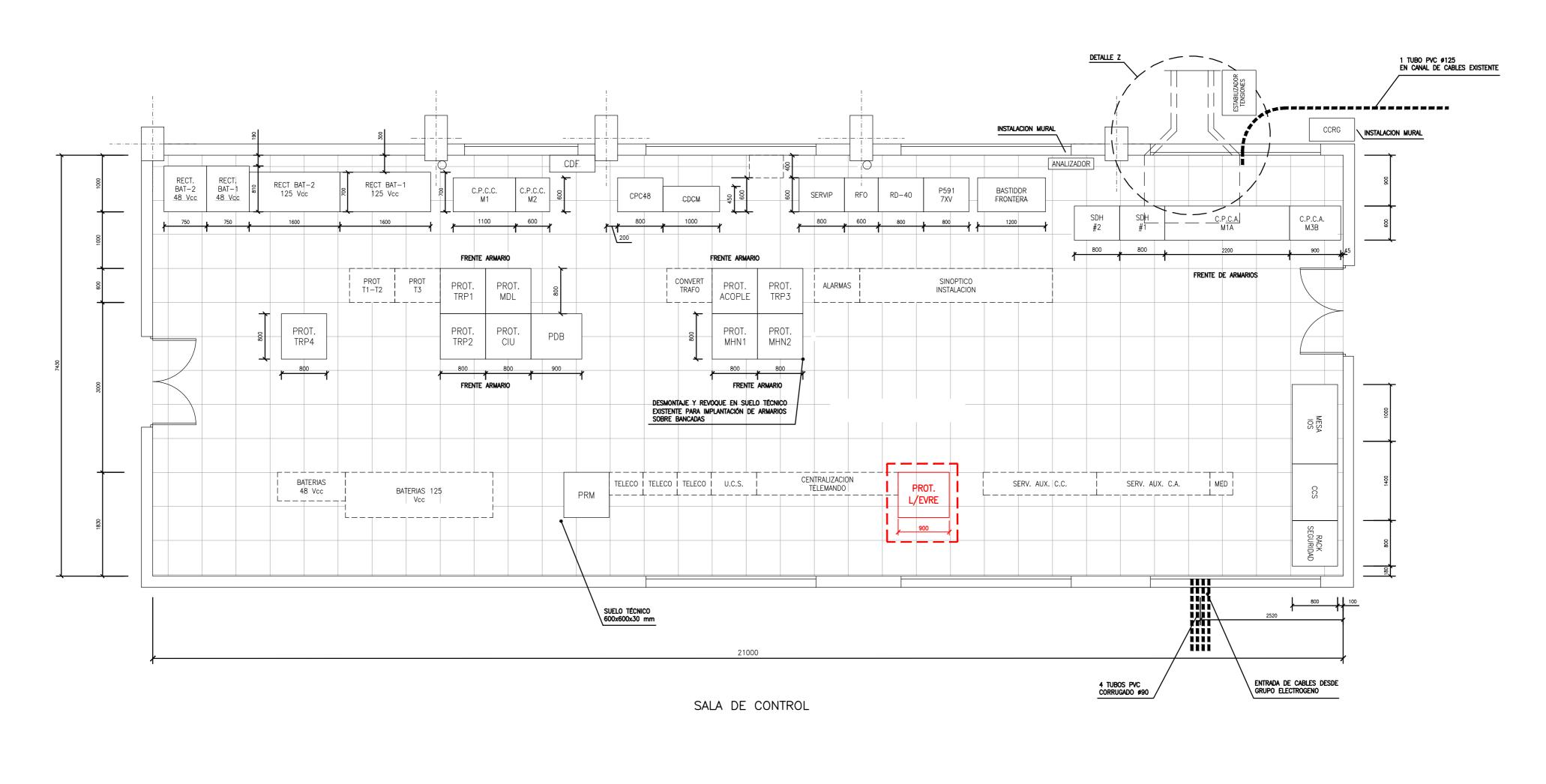
N	04-	16	D.P.F.	A.R.S.	D.P.F.	DEFINITIVO CONFORME A LO CO	NSTRUID() TRA1	REE		
М	09-	15	D.P.F.	A.R.S.	D.P.F.	INSTALACIÓN PROTECCIÓN DIFER	RENCIAL I	BARRAS 132 kV			
REVISION	FECH	lΑ	PROYECT.	DIBUJADO	COMPROB.	MODIFICAC	APROBADO POR R.E.E.				
		ED		INSTALACIO		CION DRAGONERA	₩ aditel				
ELÉCTRICA DE ESPAÑA				PARQUE DE 132 kV							
	FECHA	NOMBRI	E TITULO				FORM	ATO: DIN A2			
PROYECTADO	12-11	D.P.F.			SALA DE	CONTROL	ESCA	LA: 1:50			
DIBUJADO	12-11	A.R.S.									
COMPROBADO	12-11	D.P.F.		DISP		IERAL DE EQUIPOS ON ACTUAL	N°	P-DRAD10	000 P		
APRORADO.		1	1		SITUACIO			-			

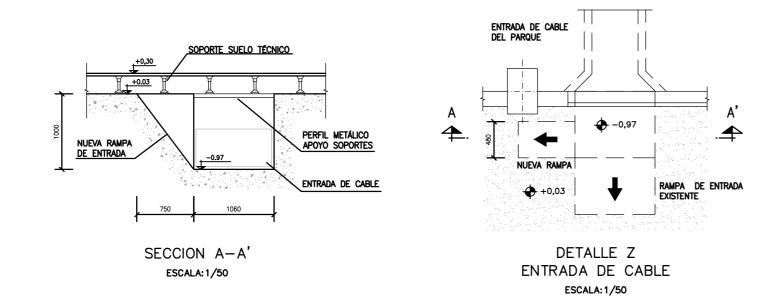
03-21

12-17

APROBADO POR R.E.E. J.M.A.

NIPSA


R.T.L.


NIPSA

J.M.A.

NIPSA

NOTAS:

1. SE SOLDARAN EN OBRA A LA BANCADA PERFILES L40.4 SEGUN PLANOS DE DETALLE (DRAG3000), EN LOS LATERALES DONDE VAYA FALSO SUELO, PARA APOYO DEL MISMO, DURANTE SU INSTALACION.

NUEVA POSICIÓN EVRE

2. SE MANTENDRÁ SIEMPRE UN PASILLO DE SERVICIO MÍNIMO DE 900 mm ENTRE ARMARIOS.

che he item zereti een			SITUACIÓN FUTURA	N° P−DRAD1000 HOJA						
Grupo Red Eléctrica		I III SALA DE COI		SALA DE CONTROL DISPOSICION GENERAL DE EQUIPOS	A2	1:50)	-10		
	R E D ELÉCTRICA DE ESPAÑA		ļ_,	0.1.1.05.00.150.1	CODIGO					
				DRAGONERA	COORD.	ETRS89	HUSC	31		
		INSTALACIÓN	102 111	VALIDO PARA PTA O						
EDICIÓN	FECHA	PROYECTADO	VERIFICADO	DESCRIPCIÓN						
0	12-17	J.D.C.E.	R.E.E.	AMPLIACION POS. TRP4 (PROYECTO J-	AMPLIACION POS. TRP4 (PROYECTO J-0841-S2977)					
Р	03-21	J.D.C.E.	R.E.E.	CONFORME A LO CONSTRUIDO (J-08	CONFORME A LO CONSTRUIDO (J-0841-S2977)					
Q	ABR-22	A.P.S.	R.E.E.	AMPLIACION L/EVRE						

SUP	SUPERFICIES DE OCUPACIÓN							
N° PARCELA DE PROYECTO	I REFERENCIΔ	OCUPACIÓN PLENO DOMINIO SUBESTACIÓN(m²)	OCUPACIÓN TEMPORAL (m²)					
1	07032A02500174	1919	661					

NOTAS.-1 COORDENADAS APROXIMADAS EXPRESADAS EN METROS

PLANOS DE REFERENCIA.— P-DRAB2001 PLANTA GENERAL.

AMPLIACIÓN POSICIÓN EVRE

N° P-DRAB1002 HOJA

LEYENDA - PARCELAS SEGÚN CATASTRO — SUBPARCELAS SEGÚN CATASTRO

OCUPACIÓN TEMPORAL

OCUPACIÓN DE PLENO DOMINIO SUBESTACIÓN

000									
700	А	NOV-20	R.H.A.	R.E.E.	AMPLIACIÓN NUEVA POSICIÓN EVF	₹E			
	EDICIÓN	FECHA	PROYECTADO	VERIFICADO	DESCRIPCIÓN				
				INSTALACIÓ	102				
76	RED ELÉCTRICA				COORD.	ETRS89	HUSO 31		
Religion	■ I 🛩 I DE ECDAÑIA 📑		TÍTULO.		CODIGO	J-0848-S14	21		

RELACION DE BIENES Y DERECHOS (RBD)

PROYECTO TÉCNICO ADMINISTRATIVO

AMPLIACIÓN DE LA SUBESTACIÓN DRAGONERA 132 kV. NUEVA POSICIÓN EVRE

DOCUMENTO 4
PRESUPUESTO

Dirección de Ingeniería y Construcción Dpto. Ingeniería de Subestaciones

El presupuesto del presente proyecto incluye las partidas necesarias para el diseño y ejecución del proyecto. En este presupuesto no se incluyen otros costes incurridos para la final realización de la instalación, como son los costes de terrenos, licencias y tasas, costes financieros y costes de gestión y administración

1. PRESUPUESTO DESGLOSADO SUBESTACIÓN DE DRAGONERA 132 kV (en euros)

Ingeniería de proyecto	40.827
Materiales	465.745
Aparamenta y materiales de alta tensión	374.500
Protecciones, control y comunicaciones	88.830
Bastidores cuadros y convertidores 12.78	82
Sistemas de control	34
Sistemas de comunicación	00
Protecciones	38
Servicios auxiliares, baterías y alumbrado2.48	87
Cables22.58	89
Estructura metálica	2.415
Obra civil y montaje electromecánico Pruebas y puesta en servicio Servicios diversos	36.000
TOTAL PRESUPUESTO 1	734.476 euros
PRESUPUESTO DE SEGURIDAD Y SALUD LABORAL (en euros))
Seguridad y salud laboral	
TOTAL PRESUPUESTO 2	7.206 euros
PRESUPUESTO TOTAL	
SUBESTACIÓN	734.476
SEGURIDAD Y SALUD LABORAL	7.206
<u>Total</u>	<u>741.682 euros</u>

El presupuesto total de la ampliación de la Subestación asciende a **SETECIENTOS CUARENTA Y UN MIL SEISCIENTOS OCHENTA Y DOS EUROS**.

Madrid, mayo de 2022

El Ingeniero industrial

David González Jouanneau

Jefe del Departamento de Ingeniería de Subestaciones

Red Eléctrica de España, S.A.U.

PROYECTO TÉCNICO ADMINISTRATIVO

AMPLIACIÓN DE LA SUBESTACIÓN DRAGONERA 132 kV. NUEVA POSICIÓN EVRE

DOCUMENTO 5
ESTUDIO DE CAMPOS MAGNÉTICOS

Dirección de Ingeniería y Construcción Dpto. Ingeniería de Subestaciones

Índice

1.	OBJETO	3
2.	NORMATIVA VIGENTE	3
3.	METODOLOGÍA DE ANÁLISIS DE CAMPOS MAGNÉTICOS	4
4.	CARACTERÍSTICAS DE LA INSTALACIÓN Y DATOS DE CÁLCULO	4
5.	RESULTADOS	9
6.	EVALUACIÓN DE LOS RESULTADOS	10
7.	CONCLUSIONES	10
8	REFERENCIAS	11

1. OBJETO

El objeto de este estudio es estimar las emisiones de campo magnético en el exterior accesible por el público del parque de 132 kV AIS del proyecto tipo, con el propósito de comprobar el cumplimiento de los límites establecidos por la normativa vigente.

El estudio comprende el cálculo de los niveles máximos del campo magnético que por razón del funcionamiento de la subestación pueden alcanzarse en su entorno, y su evaluación comparativa con los límites establecidos en la normativa vigente.

El cálculo se circunscribe al parque de 132 kV AIS del proyecto tipo según se observa en la figura 4.

2. NORMATIVA VIGENTE

El R.D. 337/2014 de 9 de mayo, recoge el "Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión" (RAT). Este nuevo Reglamento limita los campos electromagnéticos en la proximidad de instalaciones de alta tensión, remitiendo al R.D. 1066/2001.

El R.D. 1066/2001 de 28 de septiembre, por el que se aprueba el "Reglamento que establece condiciones de protección del dominio público radioeléctrico, restricciones a las emisiones radioeléctricas y medidas de protección sanitaria frente a las emisiones radioeléctricas", adopta medidas de protección sanitaria de la población estableciendo unos límites de exposición del público a campos electromagnéticos procedentes de emisiones radioeléctricas acordes a las recomendaciones europeas. Para el campo magnético generado a la frecuencia industrial de 50 Hz, el límite establecido es de 100 microteslas (100 µT).

En el RAT, las limitaciones y justificaciones necesarias aparecen indicadas en las instrucciones técnicas complementarias siguientes:

- 1. ITC-RAT-14. INSTALACIONES ELÉCTRICAS DE INTERIOR. 4.7: Limitación de los campos magnéticos en la proximidad de instalaciones de alta tensión.
- 2. ITC-RAT-15. INSTALACIONES ELÉCTRICAS DE EXTERIOR. 3.15: Limitación de los campos magnéticos en la proximidad de instalaciones de alta tensión.
- 3. ITC-RAT-20. ANTEPROYECTOS Y PROYECTOS. 3.2.1: Memoria.

En relación al campo magnético generado por los transformadores de potencia, se aplica la norma UNE-CLC/TR 50453 IN de noviembre de 2008, "Evaluación de los campos electromagnéticos alrededor de los transformadores de potencia".

Aunque la medida de campos magnéticos no es objeto del presente documento, a continuación, se indican las normas aplicables a la misma:

- 1. Norma UNE 20833 de abril de 1997: "Medida de los campos eléctricos a frecuencia industrial".
- Norma UNE-EN 62110 de mayo de 2013. "Campos eléctricos y magnéticos generados por sistemas de alimentación en corriente alterna. Procedimientos de medida de los niveles de exposición del público en general".
- 3. Norma UNE-EN 61786-1 de octubre de 2014. "Medición de campos magnéticos en corriente continua, campos eléctricos y magnéticos en corriente alterna de 1 Hz a 100 kHz. Parte 1: Requisitos para los instrumentos de medida".
- 4. Norma IEC 61786-2 de diciembre de 2014. "Measurement of DC magnetic, AC magnetic and AC electric fields from 1 Hz to 100 kHz with regard to exposure of human beings. Part 2: Basic standard for measurements.

3. METODOLOGÍA DE ANÁLISIS DE CAMPOS MAGNÉTICOS

Para la elaboración del análisis del campo magnético, se ha desarrollado una aplicación que realiza la simulación y cálculo del campo magnético en los puntos deseados de la instalación y su entorno.

La aplicación desarrollada está realizada sobre Matlab/Octane. El cálculo está basado en un cálculo analítico (Biot y Savart de un segmento) realizado sobre el conjunto de conductores 3D de una subestación, discretizados a segmentos rectilíneos, y sobre un periodo de onda completo para obtener valores eficaces. Se tienen en cuenta los diferentes desfases entre fases o motivados por la presencia de un transformador. La misma metodología ha sido empleada con buenos resultados en otros estudios publicados [1],[2],[3].

A modo de validación de la aplicación se han calculado los ejemplos descritos en la Norma UNE-EN 62110, obteniéndose los mismos resultados que en dicha norma. El desarrollo de estos cálculos se recoge en el anexo a este documento.

El cálculo no tiene en cuenta el campo generado por los transformadores, sólo por los conductores. Esta simplificación no afecta de forma significativa a los resultados obtenidos según se indica en UNE-CLC/TR-50453. De igual forma, no se consideran los posibles apantallamientos debidos a pantallas de cables o envolventes de la aparamenta eléctrica, quedando el cálculo por el lado de la seguridad.

La entrada de datos de la aplicación es la topología en 3D del conjunto de conductores de la subestación, así como las corrientes que circulan por cada conductor. Las corrientes consideradas para el cálculo son las máximas previstas para cada posición (en especial de los transformadores) o tramo de ella, de forma que se obtiene el máximo campo magnético. El estado de carga máximo planteado es técnicamente posible de alcanzar, pero difícil que se produzca en realidad, y en todo caso durante un breve espacio de tiempo.

En ocasiones, debido a la topología de la instalación, no es posible determinar las corrientes por todos los tramos de las diferentes posiciones. Para estos casos se estiman las corrientes por dichos tramos que den lugar a los campos más desfavorables.

Los resultados obtenidos se presentan en los límites exteriores de la subestación accesibles por el público, considerándose para el cálculo una distancia de 0,2 m del vallado y a una altura de 1 m, según UNE-EN 62110. De igual forma, se facilita el cálculo del campo B en toda la superficie de la subestación a una altura de 1 m a efectos informativos.

4. CARACTERÍSTICAS DE LA INSTALACIÓN Y DATOS DE CÁLCULO

El parque de 132 kV AIS del proyecto tipo tiene las siguientes características:

Nivel de 132 kV.

-	Tipo	Intemperie convencional
-	Topología	Doble barra
-	Posiciones de línea	4
-	Posiciones de barras	2
-	Posiciones de acoplo	1
-	Superficie aprox. del parque	12000 m ²

En el estado de carga considerado, las líneas 1 y 2 se conectan a la barra 1 y aportan su máxima potencia. El acoplamiento está cerrado. Las líneas 3 y 4 se conectan a la barra 2 y evacuan su potencia máxima.

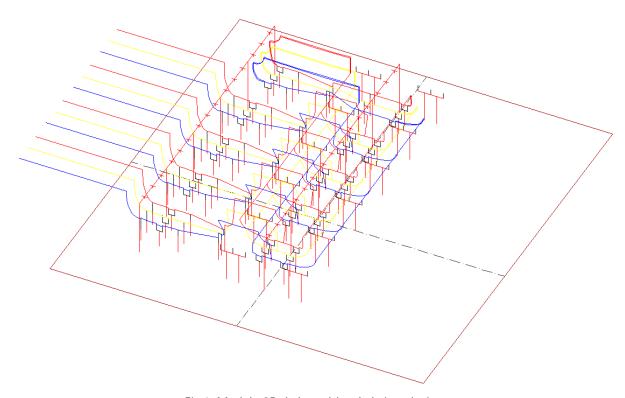


Fig 1: Modelo 3D de los cables de la instalación.

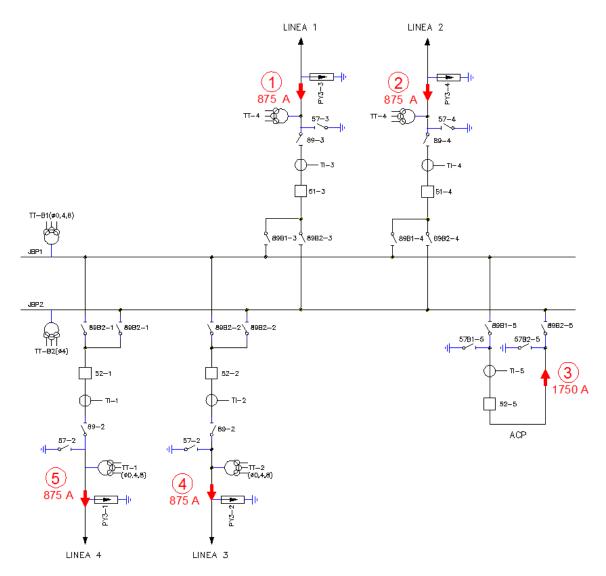


Fig 2: Unifilar con intensidades consideradas

Las intensidades consideradas para el cálculo del campo magnético son las siguientes:

POSICIÓN O TRAMO	REF.	INTENSIDAD (A)	FASE (°)	TIPO
LÍNEA 1	1	875 ₍₁₎	0	Trifásica equilibrada
LÍNEA 2	2	875 ₍₁₎	0	Trifásica equilibrada
UNIÓN DE BARRAS	3	1750	0	Trifásica equilibrada
LÍNEA 4	4	875 ₍₁₎	0	Trifásica equilibrada
LÍNEA 3	5	875 ₍₁₎	0	Trifásica equilibrada

⁽¹⁾ Intensidad correspondiente a la capacidad de transporte máxima de la línea, 200 MVA.

El Real Decreto 1066/2001 aconseja tomar medidas que limiten las radiaciones de campo eléctrico y magnético. En el caso que nos ocupa, las distancias existentes entre los equipos eléctricos y el cierre de la

instalación, permiten reducir los niveles de exposición al público en general por debajo de los límites establecidos en el Real Decreto.

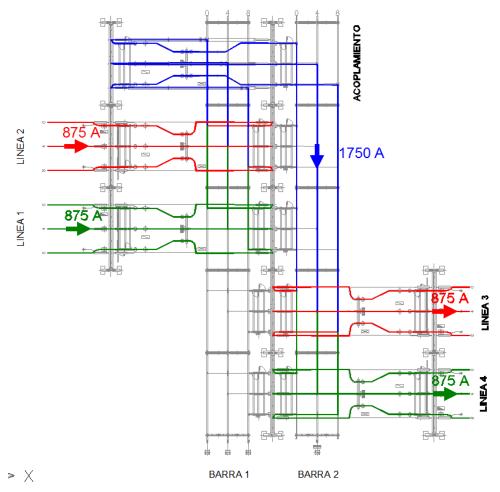


Fig 3: Intensidades estimadas para cálculo de campo magnético

Para la introducción de la topología del parque se ha partido de los planos de planta general del parque y cortes de las calles, así como la potencia de los transformadores y potencia máxima de las líneas.

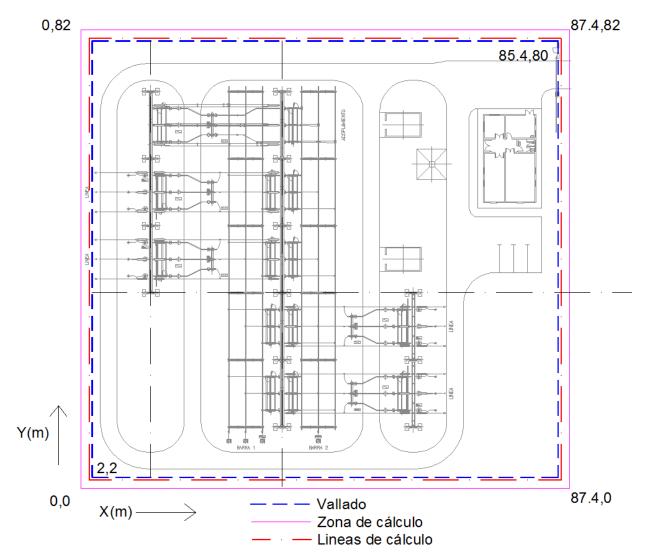


Fig 4: Vallado y zonas límite del cálculo

5. RESULTADOS

La simulación del campo magnético ha sido realizada con el estado de carga indicado anteriormente, estado de carga máximo realizable. Por tanto, los valores de campo magnético calculados y representados serán superiores a los que se producirán durante el funcionamiento habitual de la subestación.

Se ha obtenido el campo magnético en el parque de 132 kV, a 1 metro de altura del suelo. Los resultados obtenidos se representan tanto en el límite exterior del parque de 132 kV. (requerimiento reglamentario) como en el interior del mismo.

Se han presentado los resultados del campo magnético en el exterior del vallado del parque a una distancia de 0.2 m del mismo, según las líneas de cálculo de la figura 4.

Los valores más elevados de campo en el exterior se producen en la zona de entrada de las líneas de 132 kV, siendo de 12.21 μ T.

Los resultados se incluyen en el plano "CAMPO MAGNÉTICO A 1 m. SOBRE EL SUELO".

En las figuras siguientes se representa, como resumen, el campo magnético en los puntos de intersección de una cuadrícula de 21 x 21, correspondiendo a un separación de 4.37 x 4.1m. La resolución utilizada para el cálculo es de 0.2 m.

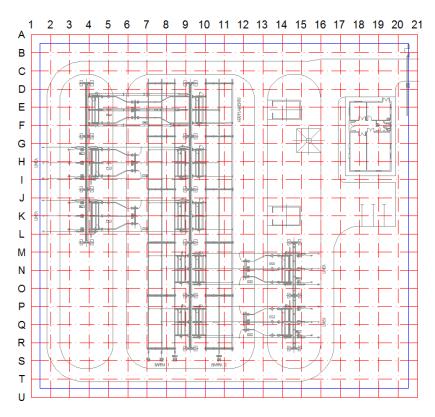


Fig 5: Cuadrícula para resumen de los resultados

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Α	1,91	2,11	2,52	3,14	3,65	3,71	3,43	3,08	2,70	2,23	1,74	1,30	0,96	0,73	0,60	0,54	0,52	0,52	0,53	0,54	0,55
В	2,23	2,54	3,23	4,35	5,25	5,33	4,84	4,32	3,77	3,02	2,24	1,57	1,08	0,77	0,61	0,55	0,54	0,55	0,56	0,58	0,59
С	3,03	3,70	5,50	8,96	11,58	11,59	10,39	9,66	8,58	6,30	4,10	2,47	1,41	0,85	0,62	0,56	0,57	0,61	0,64	0,66	0,68
D	4,04	5,22	9,38	20,03	27,39	26,36	25,31	28,80	28,00	18,06	9,30	4,34	1,96	0,96	0,60	0,56	0,62	0,68	0,73	0,78	0,80
Е	5,18	6,11	12,94	38,75	55,96	46,31	55,85	85,06	86,05	56,71	22,60	8,08	3,08	1,32	0,69	0,61	0,69	0,79	0,87	0,93	0,97
F	6,78	5,78	7,14	34,13	51,56	37,89	48,07	84,56	94,35	79,63	43,47	15,68	5,56	2,25	1,07	0,78	0,85	0,97	1,07	1,14	1,19
G	9,37	9,40	10,54	23,97	31,48	28,40	26,72	36,61	48,97	61,10	51,90	23,81	8,66	3,48	1,65	1,13	1,14	1,26	1,37	1,45	1,51
Н	10,95	12,82	21,05	33,14	34,54	24,24	20,96	32,95	42,81	50,36	46,88	25,47	10,47	4,51	2,31	1,65	1,61	1,71	1,83	1,91	1,97
- 1	9,80	10,65	16,22	26,59	27,61	17,57	21,15	31,68	37,55	45,22	43,59	25,24	11,20	5,25	3,04	2,40	2,35	2,44	2,53	2,61	2,66
J	8,83	8,44	8,71	16,42	17,34	10,24	20,94	38,64	39,76	43,29	41,99	24,99	11,54	5,93	4,09	3,62	3,56	3,59	3,64	3,68	3,70
K	10,75	12,51	21,35	34,96	37,46	26,54	18,92	28,88	33,87	41,51	41,74	25,01	11,93	7,16	6,05	5,77	5,58	5,44	5,35	5,31	5,29
L	11,47	13,87	21,60	31,83	33,52	23,76	15,06	14,82	23,47	36,62	40,13	25,33	14,03	11,06	10,41	9,64	8,72	8,10	7,78	7,61	7,53
М	9,38	10,47	12,04	13,46	13,06	9,85	7,67	10,47	18,19	30,12	37,21	29,21	27,56	26,90	21,71	15,28	12,00	10,75	10,21	9,94	9,79
N	6,49	6,69	6,75	6,65	6,11	4,94	4,37	8,11	22,00	38,07	37,22	34,69	43,22	42,30	31,02	17,02	12,57	11,33	10,78	10,47	10,30
0	4,37	4,33	4,21	4,00	3,65	3,13	2,80	4,06	12,76	24,47	23,02	16,38	22,49	23,27	16,44	11,06	10,33	9,67	9,20	8,90	8,73
Р	3,04	2,96	2,85	2,70	2,51	2,30	2,23	2,24	5,71	8,69	12,88	17,60	24,25	23,78	16,31	10,81	10,15	9,53	9,08	8,80	8,64
Q	2,22	2,15	2,06	1,96	1,86	1,81	2,13	4,19	13,51	22,36	18,64	26,42	40,65	41,27	30,46	16,55	12,22	11,10	10,62	10,36	10,21
R	1,69	1,63	1,57	1,50	1,43	1,43	1,71	3,35	9,66	16,66	10,78	8,54	21,79	25,72	21,18	14,79	11,70	10,60	10,16	9,93	9,82
S	1,33	1,29	1,24	1,19	1,14	1,13	1,27	2,13	4,80	7,35	5,92	3,87	7,12	9,18	9,46	9,18	8,56	8,08	7,82	7,69	7,62
T	1,08	1,05	1,02	0,98	0,95	0,94	1,03	1,45	2,42	3,26	3,04	2,65	3,48	4,43	5,03	5,42	5,54	5,51	5,45	5,41	5,39
U	0,89	0,88	0,86	0,84	0,82	0,82	0,88	1,08	1,43	1,73	1,79	1,86	2,22	2,69	3,11	3,43	3,63	3,73	3,77	3,79	3,80

Fig 6: Valores de campo magnético en microteslas en los puntos de intersección de la cuadrícula de la figura 5. Los valores recuadrados son los más cercanos al vallado del parque.

6. EVALUACIÓN DE LOS RESULTADOS

De acuerdo con el Resumen informativo elaborado por el Ministerio de Sanidad y Consumo con fecha 11 de Mayo de 2001, a partir del informe técnico realizado por un Comité pluridisciplinar de Expertos Independientes en el que se evaluó el riesgo de los campos electromagnéticos sobre la salud humana, se puede concretar que para los niveles de campo magnético que se generan en el parque de 132 kV AIS del proyecto tipo, no se ocasionan efectos adversos para la salud, ya que son unos niveles de radiación muy inferiores a las 100 μ T., límite preventivo para el cual, se puede asegurar que no se ha identificado ningún mecanismo biológico que muestre una posible relación causal entre la exposición a estos niveles de campo electromagnético y el riesgo de padecer alguna enfermedad, en concordancia así mismo, con las conclusiones de la Recomendación del Consejo de Ministros de Salud de la Unión Europea (1999/519/CE), relativa a la exposición del público a campos electromagnéticos de 0 Hz a 300 GHz, cuya trascripción al ámbito nacional queda recogido en el Real Decreto 1066/2001 28 de Septiembre de 2001.

Estos niveles de campo magnético no son, por otra parte, exclusivos de subestaciones eléctricas, siendo habituales en otros ambientes, como oficinas, medios de locomoción o incluso en ambientes residenciales fruto de la evolución tecnológica de la sociedad.

7. CONCLUSIONES

Como conclusión de la simulación y cálculo realizado del campo magnético generado por la actividad del parque de 132 kV AIS del proyecto tipo, en las condiciones más desfavorables de funcionamiento (hipótesis de carga máxima realizable), se obtiene que los valores de radiación emitidos están muy por debajo

de los valores límite recomendados, esto es, 100 μT para el campo magnético a la frecuencia de la red, 50Hz.

8. REFERENCIAS

- [1] C. Munteanu, Ioan T. Pop, V. Topa, C. Hangea, T. Gutiu, S. Lup "Study of the Magnetic Field Distribution inside Very High Voltage Substations" 2012 International Conference and Exposition on Electrical and Power Engineering (EPE 2012) IEEE.
- [2] C. Munteanu, C. Diaconu, I. T. Pop, and V. Topa "Electric and Magnetic Field Distribution Inside High Voltage Power Stations from Romanian Power Grid" International Symposium on Power Electronics, Electrical Drives, Automation and Motion. IEEE.
- [3] G. Visan, I. T. Pop and C. Munteanu "Electric and Magnetic Field Distribution in Substations belonging to Transelectrica TSO" 2009 IEEE Bucharest Power Tech Conference.

Madrid, mayo de 2022

El Ingeniero industrial

David González Jouanneau

Jefe del Departamento de Ingeniería de Subestaciones

Red Eléctrica de España, S.A.U.

PROYECTO TÉCNICO ADMINISTRATIVO

AMPLIACIÓN DE LA SUBESTACIÓN DRAGONERA 132 kV

DOCUMENTO 6
RELACIÓN DE BIENES Y DERECHOS

Dirección de Ingeniería y Construcción Dpto. Ingeniería de Subestaciones

Índice

CAPÍTULO 1.	OBJETO	3
CAPÍTULO 2.	AFECCIONES	3
CAPÍTULO 3.	RELACIÓN DE BIENES Y DERECHOS AFECTADOS	3
CAPÍTULO 4.	PLANOS PARCELARIOS	5

CAPÍTULO 1. OBJETO

En virtud de lo establecido en el Art. 54.1 de la Ley 54/1997 de 27 de Noviembre del Sector Eléctrico (LSE), y en el Art. 149.1 del Real Decreto 1955/2000 de 1 de Diciembre por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica, la Declaración, en concreto, de Utilidad Pública, lleva implícita, en todo caso, la necesidad de ocupación de los bienes o de adquisición de los derechos afectados e implica la urgente ocupación a los efectos del Art. 52 de la Ley de Expropiación Forzosa.

Por ello, en cumplimiento de lo prescrito en las citadas leyes, se integra en este Proyecto Técnico Administrativo el presente Anexo de Afecciones a los mencionados efectos de urgente ocupación de la Ley de Expropiación Forzosa.

CAPÍTULO 2. AFECCIONES

La ampliación de la subestación de Dragonera 132 kV, requiere:

- La expropiación permanente o del pleno dominio de la superficie de terreno ocupado por la ampliación de la nueva posición EvRE.
- La ocupación temporal de los terrenos necesarios para movimiento de maquinaria y acopio de material en la fase de ejecución de obra.

CAPÍTULO 3. RELACIÓN DE BIENES Y DERECHOS AFECTADOS

La construcción de la ampliación de la subestación Dragonera 132 kV, supone la afección, en los términos legalmente previstos, de la parcela que se indica en la relación que figura en el cuadro adjunto y que a su vez queda reflejado en el plano de proyecto P-DRA_RBD (IMPLANTACIÓN), incluido en el Documento nº 3 Planos.

En dicha relación de bienes y derechos se incorporan, en su caso a efectos meramente indicativos los bienes y derechos a cargo de las distintas administraciones y organismos, que pudieran resultar afectados por la instalación.

AMPLIACIÓN SUBESTACIÓN DRAGONERA 132 kV T.M.Mao - Mahón (Menorca, Illes Balears)

Parcela Pro- yecto	Propietario	Referencia Catastral	Polí- gono	Par- cela	Superficie cie parcela (m²)	Ocupación pleno do- minio Subesta- ción (m²)	Ocupa- ción pleno dominio Acceso (m²)	Ocupa- ción tempo- ral (m²)	Naturaleza del terreno	
	EDISTRIBUCION REDES DIGITALES SLU (80,89% de propiedad)	07032A025001740000UU	25	174	39.027	1.919		661	Industrial. Subestación Eléctrica.	
1	RED ELECTRICA DE ESPAÑA SA (19,11% de propiedad)									

CAPÍTULO 4. PLANOS PARCELARIOS

1.- Relación de bienes y derechos: P-MDL_RBD

Madrid, mayo de 2022

El Ingeniero industrial

David González Jouanneau

Jefe del Departamento de Ingeniería de Subestaciones

Red Eléctrica de España, S.A.U.